Analytical Study on the Warpage Deformation of Die Attach Structure in Power Devices

被引:2
作者
Luan, Xinghe [1 ]
Ding, Liguo [2 ]
Li, Xuemin [2 ]
Zhang, Hongjie [2 ]
Li, Kewei [2 ]
Zhou, Longzao [1 ]
Wu, Fengshun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Chengdu Perfect Technol Co Ltd, Chengdu 610404, Sichuan, Peoples R China
来源
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY | 2024年 / 14卷 / 11期
基金
中国国家自然科学基金;
关键词
Stress; Deformation; Microassembly; Strain; Substrates; Young's modulus; Plastics; Thermal expansion; Packaging; Nonhomogeneous media; Die attach structure; interconnect layer thickness; material physical parameters; warpage deformation; MICROSTRUCTURE EVOLUTION; RELIABILITY; MODEL;
D O I
10.1109/TCPMT.2024.3481464
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
According to the theory of elastic-plastic mechanics, the stress and deformation of a die attach structure under a temperature load were studied. An analytical relation between the deformation and the material physical parameters (coefficient of thermal expansion, Young's modulus, yield stress, tangent modulus, and Poisson's ratio) and geometric dimensions (thickness and length) was established, and the correctness of the relation was verified through experiments. The trends of the experimental and calculated values were consistent, with errors of about 20%. The increase in interconnect layer thickness and chip thickness and the decrease in chip length are beneficial to reduce the warping deformation.
引用
收藏
页码:1959 / 1967
页数:9
相关论文
共 37 条
[1]  
Jeong H., Min K.D., Lee C.-J., Kim J.-H., Jung S.-B., Mechanical reliability of Cu cored solder ball in flip chip package under thermal shock test, Microelectron. Rel., 112, (2020)
[2]  
Marbut C.J., Nafis B., Huitink D., Accelerated mechanical low cycle fatigue in isothermal solder interconnects, Microelectron. Rel., 116, (2021)
[3]  
Yongle H., Yifei L., Fei X., Binli L., Xin T., Physics of failure of die-attach joints in IGBTs under accelerated aging: Evolution of micro-defects in lead-free solder alloys, Microelectron. Rel., 109, (2020)
[4]  
Barbagallo C., Malgioglio G.L., Petrone G., Cammarata G., Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module, J. Phys., Conf. Ser., 841, (2017)
[5]  
Deng E., Zhao Z., Xin Q., Zhang J., Huang Y., Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs, Microelectron. Rel., 78, pp. 25-37, (2017)
[6]  
Huang X., Wang Z., Yu Y., Thermomechanical properties and fatigue life evaluation of SnAgCu solder joints for microelectronic power module application, J. Mater. Res. Technol., 9, 3, pp. 5533-5541, (2020)
[7]  
Siswanto W.A., Arun M., Krasnopevtseva I.V., Surendar A., Maseleno A., A competition between stress triaxiality and Joule heating on microstructure evolution and degradation of SnAgCu solder joints, J. Manuf. Processes, 54, pp. 221-227, (2020)
[8]  
Benabou L., Sun Z., Dahoo P.R., A thermo-mechanical cohesive zone model for solder joint lifetime prediction, Int. J. Fatigue, 49, pp. 18-30, (2013)
[9]  
Zhang Z.-H., Wang X.-S., Ren H.-H., Jia S., Yang H.-H., Simulation study on thermo-fatigue failure behavior of solder joints in package-on-package structure, Microelectron. Rel., 75, pp. 127-134, (2017)
[10]  
Rajaguru P., Lu H., Bailey C., Ortiz-Gonzalez J., Alatise O., Evaluation of the impact of the physical dimensions and material of the semiconductor chip on the reliability of Sn3.5Ag solder interconnect in power electronic module: A finite element analysis perspective, Microelectron. Rel., 68, pp. 77-85, (2017)