A High-Precision Real-Time Temperature Acquisition Method Based on Magnetic Nanoparticles

被引:2
作者
Zhu, Yuchang [1 ]
Ke, Li [1 ]
Wei, Yijing [1 ]
Zheng, Xiao [2 ]
机构
[1] Shenyang Univ Technol, Sch Elect Engn, Shenyang 110870, Peoples R China
[2] Chinese Acad Sci, Inst Appl Ecol, CAS State Key Lab Forest & Management, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
magnetic nanoparticle; magnetothermal equation; temperature inversion; harmonic amplitude; IRON-OXIDE NANOPARTICLES; QUANTUM DOTS; HYPERTHERMIA; THERAPY; NANOSCALE; ABLATION;
D O I
10.3390/s24237716
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The unique magnetothermal properties of magnetic nanoparticles enable the development of a high-precision, real-time, noninvasive temperature measurement method with significant potential in the biomedical field. Based on a low-frequency alternating magnetic field excitation model, we construct two additional magnetic field excitation models-alternating current-direct current superposition and dual-frequency superposition-to extract harmonic amplitude components from the magnetization response. To increase the accuracy of harmonic information acquisition, the effects of the truncation error, excitation magnetic field frequency, and amplitude are thoroughly analyzed, and optimal parameter values are selected to minimize the error. A single algorithm is designed for temperature inversion, and a joint algorithm is proposed to optimize the performance of the single algorithm. Under low-frequency alternating-current magnetic field excitation, the autonomous group particle swarm optimization method achieves superior real-time performance in terms of temperature inversion and running time. Compared with the opposition learning gray wolf optimizer and particle swarm optimization-gray wolf optimization, the proposed method achieves reductions of 52% and 68%, respectively. Additionally, under dual-frequency superimposed magnetic field excitation, a higher temperature inversion accuracy is achieved compared with that of the particle swarm optimization-gray wolf optimization algorithm, reducing the error from 0.237 K to 0.094 K.
引用
收藏
页数:20
相关论文
共 40 条
[1]   Quantum dots to probe temperature and pressure in highly confined liquids [J].
Albahrani, Sayed M. B. ;
Seoudi, Tarek ;
Philippon, David ;
Lafarge, Lionel ;
Reiss, Peter ;
Hajjaji, Hamza ;
Guillot, Gerard ;
Querry, Michel ;
Bluet, Jean-Marie ;
Vergne, Philippe .
RSC ADVANCES, 2018, 8 (41) :22897-22908
[2]   Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].
Biederer, S. ;
Knopp, T. ;
Sattel, T. F. ;
Luedtke-Buzug, K. ;
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. ;
Buzug, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
[3]   Magnetic domains. The analysis of magnetic microstructures [J].
Bogdanov, AN .
LOW TEMPERATURE PHYSICS, 1999, 25 (02) :151-152
[4]   AC magnetometry with active stabilization and harmonic suppression for magnetic nanoparticle spectroscopy and thermometry [J].
Bui, Thinh Q. ;
Tew, Weston L. ;
Woods, Solomon, I .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
[5]   Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination [J].
Chen, Po-Ming ;
Pan, Wen-Yu ;
Wu, Cheng-Yu ;
Yeh, Ching-Yen ;
Korupalli, Chiranjeevi ;
Luo, Po-Kai ;
Chou, Chun-Ju ;
Chia, Wei-Tso ;
Sung, Hsing-Wen .
BIOMATERIALS, 2020, 230
[6]   Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-analysis [J].
Datta, Niloy R. ;
Puric, Emsad ;
Klingbiel, Dirk ;
Gomez, Silvia ;
Bodis, Stephan .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 94 (05) :1073-1087
[7]   Preparation and Properties of Various Magnetic Nanoparticles [J].
Drbohlavova, Jana ;
Hrdy, Radim ;
Adam, Vojtech ;
Kizek, Rene ;
Schneeweiss, Oldrich ;
Hubalek, Jaromir .
SENSORS, 2009, 9 (04) :2352-2362
[8]   Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment [J].
Espinosa, Ana ;
Di Corato, Riccardo ;
Kolosnjaj-Tabi, Jelena ;
Flaud, Patrice ;
Pellegrino, Teresa ;
Wilhelm, Claire .
ACS NANO, 2016, 10 (02) :2436-2446
[9]   Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry [J].
Gota, Chie ;
Okabe, Kohki ;
Funatsu, Takashi ;
Harada, Yoshie ;
Uchiyama, Seiichi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) :2766-+
[10]   Thermal therapy, Part III: Ablation techniques [J].
McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ont., Canada ;
不详 ;
不详 ;
不详 ;
不详 .
Crit. Rev. Biomed. Eng., 2007, 1-2 (37-121) :37-121