Multimodal Trajectory Prediction for Diverse Vehicle Types in Autonomous Driving with Heterogeneous Data and Physical Constraints

被引:1
作者
Ge, Maoning [1 ]
Ohtani, Kento [1 ]
Ding, Ming [2 ]
Niu, Yingjie [1 ]
Zhang, Yuxiao [3 ]
Takeda, Kazuya [1 ,4 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Furo Cho,Chikusa Ward, Nagoya 4648601, Japan
[2] Zhejiang Fubang Technol Inc, Ningbo R&D Campus Block A, Ningbo 315048, Peoples R China
[3] RoboSense Technol Co Ltd, 701 Block B,800 Naxian Rd, Pudong 200131, Shanghai, Peoples R China
[4] Nagoya Univ, Tier IV Inc, Open Innovat Ctr, 1-3,Mei-eki 1 Chome,Nakamura Ward, Nagoya 4506610, Japan
关键词
multi-agent trajectory prediction; multimodal learning; Conditional Variational Autoencoder; Gaussian Mixture Model; autonomous driving;
D O I
10.3390/s24227323
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The accurate prediction of vehicle behavior is crucial for autonomous driving systems, impacting their safety and efficiency in complex urban environments. To address the challenge of multi-agent trajectory prediction, we propose a novel model integrating multiple input modalities, including historical trajectories, map data, vehicle features, and interaction information. Our approach employs a Conditional Variational Autoencoder (CVAE) framework with a decoder that predicts control actions using the Gaussian Mixture Model (GMM) and then converts these actions into dynamically feasible trajectories through a bicycle model. Evaluated on the nuScenes dataset, the model achieves great performance across key metrics, including minADE5 of 1.26 and minFDE5 of 2.85, demonstrating robust performance across various vehicle types and prediction horizons. These results indicate that integrating multiple data sources, physical models, and probabilistic methods significantly improves trajectory prediction accuracy and reliability for autonomous driving. Our approach generates diverse yet realistic predictions, capturing the multimodal nature of future outcomes while adhering to Physical Constraints and vehicle dynamics.
引用
收藏
页数:20
相关论文
共 62 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]  
Altché F, 2017, IEEE INT C INTELL TR
[3]   Real time trajectory prediction for collision risk estimation between vehicles [J].
Ammoun, Samer ;
Nashashibi, Fawzi .
2009 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, PROCEEDINGS, 2009, :417-+
[4]  
[Anonymous], 2008, P 2008 11 INT C INF
[5]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
[6]  
Caesar H, 2020, Arxiv, DOI arXiv:1903.11027
[7]  
Chai YN, 2019, Arxiv, DOI arXiv:1910.05449
[8]  
Chandra R, 2020, Arxiv, DOI arXiv:2011.04816
[9]  
Cho KYHY, 2014, Arxiv, DOI [arXiv:1406.1078, DOI 10.48550/ARXIV.1406.1078]
[10]  
Cui HG, 2019, IEEE INT CONF ROBOT, P2090, DOI [10.1109/icra.2019.8793868, 10.1109/ICRA.2019.8793868]