A code-based method for carbon emission prediction of 3D printing: A case study on the fused deposition modeling (FDM) 3D printing and comparison with conventional approach

被引:0
|
作者
Yu, Shujun [1 ]
Liu, Heng [1 ]
Zhao, Gang [2 ]
Zhang, Hua [3 ]
Hou, Feng [4 ,5 ]
Xu, Kuankuan [4 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Management, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Hubei, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Green Mfg Engn, Wuhan 430081, Hubei, Peoples R China
[4] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan 430081, Hubei, Peoples R China
[5] Deakin Univ, Sch Engn, Geelong, Vic 3216, Australia
基金
中国国家自然科学基金;
关键词
3D printing technology; Injection molding; G code; Carbon emission prediction; Sustainability; Process parameters; LIFE-CYCLE ANALYSIS; ENVIRONMENTAL IMPACTS; ENERGY-CONSUMPTION; MACHINE-TOOLS; IRON; SUSTAINABILITY; OPTIMIZATION; SCALE; PLANT;
D O I
10.1016/j.jclepro.2024.144341
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a method for predicting carbon emissions from 3D printing based on the G-code and compares the emissions between FDM and injection molding (IM) processes. Traditional manufacturing methods for (polylactic acid) PLA plastic products involve IM, which require extensive equipment and metal molds to be manufactured first. This process involves repetitive heating and machining, low material utilization, high energy consumption, and high pollution. 3D printing using a gradual accumulation of materials to manufacture parts has transformed traditional manufacturing methods. However, concerns regarding the environmental impact of 3D printing have been raised in previous studies. To achieve sustainability in 3D printing, it is important to make effective adjustments by predicting the carbon emissions before printing. In this study, we propose a method for predicting carbon emissions from 3D printing by integrating processing characteristics with G-code instructions. The deviation of the model was confirmed to be between 3.86% and 5.82% through a case study of FDM 3D printing. The optimal process parameters were determined from carbon emissions predictions, resulting in carbon emissions reductions of up to 43.77%. Carbon emissions were evaluated using both the traditional IM method and FDM 3D printing for manufacturing PLA plastic products. The results showed that the carbon emissions from FDM were significantly lower than those from traditional IM in small batches or customized production. In the traditional IM method, mold manufacturing produces high carbon emissions, accounting for more than 99% of the entire process. The findings of this study offer valuable guidance to manufacturers in selecting appropriate manufacturing methods and formulating production strategies. By predicting carbon emissions in the FDM process and adjusting the parameters based on product quality requirements, significant reductions in carbon emissions can be achieved during the production of small batches or customized PLA plastic products. The carbon emission prediction method proposed in this study presents a more sustainable solution for 3D printing technology, which is crucial for advancing sustainable production and environmental protection in this field.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Intellectual property and 3D printing: a case study on 3D chocolate printing
    Li, Phoebe
    Mellor, Stephen
    Griffin, James
    Waelde, Charlotte
    Hao, Liang
    Everson, Richard
    JOURNAL OF INTELLECTUAL PROPERTY LAW & PRACTICE, 2014, 9 (04) : 322 - 332
  • [32] Fused Deposition Modeling (FDM) 3D Printing of the Thermo-Sensitive Peptidomimetic Drug Enalapril Maleate
    Hoffmann, Lena
    Breitkreutz, Joerg
    Quodbach, Julian
    PHARMACEUTICS, 2022, 14 (11)
  • [33] Rheological and printability evaluation of melt-cast explosives for fused deposition modeling (FDM) 3D printing
    Zong, Huzeng
    Ren, Hao
    Ke, Xiang
    Wang, Suwei
    Hao, Gazi
    Hu, Yubing
    Zhang, Guangpu
    Xiao, Lei
    Jiang, Wei
    FIREPHYSCHEM, 2024, 4 (01): : 34 - 41
  • [34] Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing
    Wang, Andong
    Tang, Xinting
    Zeng, Yongxian
    Zou, Lei
    Bai, Fan
    Chen, Caifeng
    POLYMERS, 2024, 16 (15)
  • [35] Investigation on the use of PLA/hemp composites for the fused deposition modelling (FDM) 3D printing
    Coppola, B.
    Garofalo, E.
    Di Maio, L.
    Scarfato, P.
    Incarnato, L.
    9TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS AND COMPOSITES: FROM AEROSPACE TO NANOTECHNOLOGY, 2018, 1981
  • [36] 3D Printing of Low Melting Temperature Alloys by Fused Deposition Modeling
    Hsieh, P. C.
    Tsai, C. H.
    Liul, B. H.
    Wei, W. C. J.
    Wang, A. B.
    Luo, R. C.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 1138 - 1142
  • [37] Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review
    Wasti, Sanjita
    Adhikari, Sushil
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [38] Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing
    Melocchi, Alice
    Briatico-Vangosa, Francesco
    Uboldi, Marco
    Parietti, Federico
    Turchi, Maximilian
    von Zeppelin, Didier
    Maroni, Alessandra
    Zema, Lucia
    Gazzaniga, Andrea
    Zidan, Ahmed
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 592
  • [39] Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing
    Xu, Pengchong
    Li, Jiangwei
    Meda, Alvin
    Osei-Yeboah, Frederick
    Peterson, Matthew L.
    Repka, Michael
    Zhan, Xi
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 588
  • [40] Iron-Paraffin Composite Material for 3D Printing by Fused Deposition Modeling Method
    Bondarenko, V. P.
    Ievdokymova, O. V.
    Matviichuk, O. O.
    Kutakh, K. Ye.
    Tsysar, M. O.
    POWDER METALLURGY AND METAL CERAMICS, 2021, 59 (11-12) : 730 - 738