A code-based method for carbon emission prediction of 3D printing: A case study on the fused deposition modeling (FDM) 3D printing and comparison with conventional approach

被引:0
|
作者
Yu, Shujun [1 ]
Liu, Heng [1 ]
Zhao, Gang [2 ]
Zhang, Hua [3 ]
Hou, Feng [4 ,5 ]
Xu, Kuankuan [4 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Management, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Hubei, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Green Mfg Engn, Wuhan 430081, Hubei, Peoples R China
[4] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan 430081, Hubei, Peoples R China
[5] Deakin Univ, Sch Engn, Geelong, Vic 3216, Australia
基金
中国国家自然科学基金;
关键词
3D printing technology; Injection molding; G code; Carbon emission prediction; Sustainability; Process parameters; LIFE-CYCLE ANALYSIS; ENVIRONMENTAL IMPACTS; ENERGY-CONSUMPTION; MACHINE-TOOLS; IRON; SUSTAINABILITY; OPTIMIZATION; SCALE; PLANT;
D O I
10.1016/j.jclepro.2024.144341
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a method for predicting carbon emissions from 3D printing based on the G-code and compares the emissions between FDM and injection molding (IM) processes. Traditional manufacturing methods for (polylactic acid) PLA plastic products involve IM, which require extensive equipment and metal molds to be manufactured first. This process involves repetitive heating and machining, low material utilization, high energy consumption, and high pollution. 3D printing using a gradual accumulation of materials to manufacture parts has transformed traditional manufacturing methods. However, concerns regarding the environmental impact of 3D printing have been raised in previous studies. To achieve sustainability in 3D printing, it is important to make effective adjustments by predicting the carbon emissions before printing. In this study, we propose a method for predicting carbon emissions from 3D printing by integrating processing characteristics with G-code instructions. The deviation of the model was confirmed to be between 3.86% and 5.82% through a case study of FDM 3D printing. The optimal process parameters were determined from carbon emissions predictions, resulting in carbon emissions reductions of up to 43.77%. Carbon emissions were evaluated using both the traditional IM method and FDM 3D printing for manufacturing PLA plastic products. The results showed that the carbon emissions from FDM were significantly lower than those from traditional IM in small batches or customized production. In the traditional IM method, mold manufacturing produces high carbon emissions, accounting for more than 99% of the entire process. The findings of this study offer valuable guidance to manufacturers in selecting appropriate manufacturing methods and formulating production strategies. By predicting carbon emissions in the FDM process and adjusting the parameters based on product quality requirements, significant reductions in carbon emissions can be achieved during the production of small batches or customized PLA plastic products. The carbon emission prediction method proposed in this study presents a more sustainable solution for 3D printing technology, which is crucial for advancing sustainable production and environmental protection in this field.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The Fused Deposition Modeling 3D Printing
    Yan, Longwei
    Sun, Huichao
    Qu, Xingtian
    Zhou, Wei
    Proceedings of the 2016 International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE), 2016, 51 : 201 - 203
  • [2] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (05) : 502 - 504
  • [3] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Glass Physics and Chemistry, 2021, 47 : 502 - 504
  • [4] AN EXPERIMENTAL STUDY ON THE EMISSION DYNAMICS IN FUSED DEPOSITION MODELLING (FDM) 3D PRINTING PROCESS
    Misztal, Tad Jerzy
    Addasi, Omar
    Albano, Jooi
    Liu, Yang
    PROCEEDINGS OF ASME 2024 FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 1, FEDSM 2024, 2024,
  • [5] A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters
    Kristiawan, Ruben Bayu
    Imaduddin, Fitrian
    Ariawan, Dody
    Ubaidillah
    Arifin, Zainal
    OPEN ENGINEERING, 2021, 11 (01): : 639 - 649
  • [6] Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs
    Kollamaram, Gayathri
    Croker, Denise M.
    Walker, Gavin M.
    Goyanes, Alvaro
    Basit, Abdul W.
    Gaisford, Simon
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 545 (1-2) : 144 - 152
  • [7] Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing
    Shuyang Zhang
    Muhammad Zia ur Rehman
    Samarthya Bhagia
    Xianzhi Meng
    Harry M. Meyer
    Hsin Wang
    Michael R. Koehler
    Kalsoom Akhtar
    David P. Harper
    Arthur J. Ragauskas
    Journal of Materials Science, 2022, 57 : 10141 - 10152
  • [8] Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing
    Zhang, Shuyang
    ur Rehman, Muhammad Zia
    Bhagia, Samarthya
    Meng, Xianzhi
    Meyer, Harry M., III
    Wang, Hsin
    Koehler, Michael R.
    Akhtar, Kalsoom
    Harper, David P.
    Ragauskas, Arthur J.
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (22) : 10141 - 10152
  • [9] Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery
    Long, Jingjunjiao
    Gholizadeh, Hamideh
    Lu, Jun
    Bunt, Craig
    Seyfoddin, Ali
    CURRENT PHARMACEUTICAL DESIGN, 2017, 23 (03) : 433 - 439
  • [10] Fused deposition modeling (FDM) based 3D printing of microelectrodes and multi-electrode probes
    Helu, Mariela Alicia Brites
    Liu, Liang
    ELECTROCHIMICA ACTA, 2021, 365