Minimizing Response Delay in UAV-Assisted Mobile Edge Computing by Joint UAV Deployment and Computation Offloading

被引:2
|
作者
Zhang, Jianshan [1 ]
Luo, Haibo [1 ]
Chen, Xing [2 ]
Shen, Hong [3 ]
Guo, Longkun [4 ]
机构
[1] Minjiang Univ, Sch Comp & Big Data, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China
[2] Fuzhou Univ, Minist Educ, Engn Res Ctr Big Data Intelligence, Coll Comp & Data Sci,Fujian Key Lab Network Comp &, Fuzhou 350118, Peoples R China
[3] Cent Queensland Univ, Sch Engn & Technol, Brisbane, Qld 4000, Australia
[4] Fuzhou Univ, Sch Math & Stat, Fuzhou 350118, Peoples R China
关键词
Autonomous aerial vehicles; Optimization; Mobile handsets; Servers; Delays; Relays; Heuristic algorithms; Multi-access edge computing; Computer architecture; Cloud computing; Block coordinate descent; computation offloading; mobile edge computing; unmanned aerial vehicle deployment; TASK; OPTIMIZATION; TIME;
D O I
10.1109/TCC.2024.3478172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a promising technique for offloading computation tasks from mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) utilizes UAVs as computational resources. A popular method for enhancing the quality of service (QoS) of UAV-assisted MEC systems is to jointly optimize UAV deployment and computation task offloading. This imposes the challenge of dynamically adjusting UAV deployment and computation offloading to accommodate the changing positions and computational requirements of mobile devices. Due to the real-time requirements of MEC computation tasks, finding an efficient joint optimization approach is imperative. This paper proposes an algorithm aimed at minimizing the average response delay in a UAV-assisted MEC system. The approach revolves around the joint optimization of UAV deployment and computation offloading through convex optimization. We break down the problem into three sub-problems: UAV deployment, Ground Device (GD) access, and computation tasks offloading, which we address using the block coordinate descent algorithm. Observing the $NP$NP-hardness nature of the original problem, we present near-optimal solutions to the decomposed sub-problems. Simulation results demonstrate that our approach can generate a joint optimization solution within seconds and diminish the average response delay compared to state-of-the-art algorithms and other advanced algorithms, with improvements ranging from 4.70% to 42.94%.
引用
收藏
页码:1372 / 1386
页数:15
相关论文
共 50 条
  • [21] Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach
    Wang, Yunpeng
    Fang, Weiwei
    Ding, Yi
    Xiong, Naixue
    WIRELESS NETWORKS, 2021, 27 (04) : 2991 - 3006
  • [22] Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach
    Yunpeng Wang
    Weiwei Fang
    Yi Ding
    Naixue Xiong
    Wireless Networks, 2021, 27 : 2991 - 3006
  • [23] Computation Offloading and Trajectory Design for UAV-assisted Mobile Computing Systems
    Sun, Chao
    Ni, Wei
    Wang, Xin
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 528 - 533
  • [24] Task Offloading and Resource Pricing Based on Game Theory in UAV-Assisted Edge Computing
    Chen, Zhuoyue
    Yang, Yaozong
    Xu, Jiajie
    Chen, Ying
    Huang, Jiwei
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2025, 18 (01) : 440 - 452
  • [25] Task Offloading and Trajectory Optimization for UAV-Assisted Mobile Edge Computing
    Shi, Mengmeng
    Xing, Yanchao
    Guo, Xueli
    Zhu, Xuerui
    Zhu, Ziyao
    Zhou, Jiaqi
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 432 - 437
  • [26] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [27] Energy-Latency Tradeoff for Computation Offloading in UAV-Assisted Multiaccess Edge Computing System
    Zhang, Kaiyuan
    Gui, Xiaolin
    Ren, Dewang
    Li, Defu
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 6709 - 6719
  • [28] Joint deployment and trajectory optimization in UAV-assisted vehicular edge computing networks
    Wu, Zhiwei
    Yang, Zilin
    Yang, Chao
    Lin, Jixu
    Liu, Yi
    Chen, Xin
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2022, 24 (01) : 47 - 58
  • [29] Optimal Task-UAV-Edge Matching for Computation Offloading in UAV Assisted Mobile Edge Computing
    Kim, Kitae
    Hong, Choong Seen
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [30] Joint Content Caching, Service Placement, and Task Offloading in UAV-Enabled Mobile Edge Computing Networks
    Zhao, Youhan
    Liu, Chenxi
    Hu, Xiaoling
    He, Jianhua
    Peng, Mugen
    Ng, Derrick Wing Kwan
    Quek, Tony Q. S.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2025, 43 (01) : 51 - 63