Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition

被引:0
|
作者
Jewan, Shaikh Yassir Yousouf [1 ,2 ,3 ]
Gautam, Deepak [4 ]
Sparkes, Debbie [1 ]
Singh, Ajit [2 ]
Billa, Lawal [5 ]
Cogato, Alessia [6 ]
Murchie, Erik [1 ]
Pagay, Vinay [3 ]
机构
[1] Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough
[2] School of Biosciences, University of Nottingham Malaysia Campus, Semenyih 43500, Selangor
[3] School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Adelaide, 5064, SA
[4] Geospatial Science, School of Science, Science, Technology, Engineering and Mathematics College, Royal Melbourne Institute of Technology, GPO Box 2476, Melbourne, 3001, VIC
[5] School of Environmental and Geographical Sciences, University of Nottingham Malaysia Campus, Semenyih 43500, Selangor
[6] Department of Land, Environment, Agriculture and Forestry, University of Padova Viale dell’Università, PD, Legnaro
关键词
canopy state variables; grapevine composition; grapevine yield; machine learning; proximal sensing; thermal indices; vegetation indices;
D O I
10.3390/rs16234539
中图分类号
学科分类号
摘要
Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψstem), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R2 = 0.77; RMSE = 0.56), average cluster weight (R2 = 0.93; RMSE = 0.00), average berry weight (R2 = 0.95; RMSE = 0.00), cluster weight (R2 = 0.95; RMSE = 0.13), and average berries per bunch (R2 = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R2 = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R2 = 0.83; RMSE = 0.34), pH (R2 = 0.93; RMSE = 0.02), and IMAD (R2 = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R2 = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψstem, stomatal conductance (gs), net photosynthesis (Pn), modified triangular vegetation index, modified red-edge simple ratio, and ANTgitelson index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [1] Yield prediction with machine learning algorithms and satellite images
    Sharifi, Alireza
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (03) : 891 - 896
  • [2] Maize yield and nitrate loss prediction with machine learning algorithms
    Shahhosseini, Mohsen
    Martinez-Feria, Rafael A.
    Hui, Guiping
    Archontoulis, Sotirios V.
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12):
  • [3] Yield prediction in a peanut breeding program using remote sensing data and machine learning algorithms
    Pugh, N. Ace
    Young, Andrew
    Ojha, Manisha
    Emendack, Yves
    Sanchez, Jacobo
    Xin, Zhanguo
    Puppala, Naveen
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [4] Integrating Relative Efficiency Models with Machine Learning Algorithms for Performance Prediction
    Perroni, Marcos Goncalves
    da Veiga, Claudimar Pereira
    Forteski, Elaine
    Marconatto, Diego Antonio Bittencourt
    da Silva, Wesley Vieira
    Senff, Carlos Otavio
    Su, Zhaohui
    SAGE OPEN, 2024, 14 (02):
  • [5] COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms
    Villagrana-Banuelos, Karen E.
    Maeda-Gutierrez, Valeria
    Alcala-Rmz, Vanessa
    Oropeza-Valdez, Juan J.
    Herrera-Van Oostdam, Ana S.
    Castaneda-Delgado, Julio E.
    Adrian Lopez, Jesus
    Borrego Moreno, Juan C.
    Galvan-Tejada, Carlos E.
    Galvan-Tejeda, Jorge I.
    Gamboa-Rosales, Hamurabi
    Luna-Garcia, Huizilopoztli
    Celaya-Padilla, Jose M.
    Lopez-Hernandez, Yamile
    REVISTA DE INVESTIGACION CLINICA-CLINICAL AND TRANSLATIONAL INVESTIGATION, 2022, 74 (06): : 314 - 327
  • [6] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Das, Utpol Kanti
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2024, 12 : 173583 - 173598
  • [7] Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms
    Yan, Kangting
    Song, Xiaobing
    Yang, Jing
    Xiao, Junqi
    Xu, Xidan
    Guo, Jun
    Zhu, Hongyun
    Lan, Yubin
    Zhang, Yali
    CROP PROTECTION, 2025, 188
  • [8] Dual Activation Function-Based Extreme Learning Machine (ELM) for Estimating Grapevine Berry Yield and Quality
    Maimaitiyiming, Matthew
    Sagan, Vasit
    Sidike, Paheding
    Kwasniewski, Misha T.
    REMOTE SENSING, 2019, 11 (07)
  • [9] An Approach for Potato Yield Prediction Using Machine Learning Regression Algorithms
    Patnaik, Prabhu Prasad
    Padhy, Neelamadhab
    NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 327 - 336
  • [10] Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data
    Lobato, Michaela
    Norris, William Robert
    Nagi, Rakesh
    Soylemezoglu, Ahmet
    Nottage, Dustin
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 696 - 702