Urban Vehicle Trajectory Generation Based on Generative Adversarial Imitation Learning

被引:0
|
作者
Wang, Min [1 ,2 ]
Cui, Jianqun [1 ,2 ]
Wong, Yew Wee [3 ]
Chang, Yanan [1 ,2 ]
Wu, Libing [4 ]
Jin, Jiong
机构
[1] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Transportat Internet Things, Wuhan 430070, Peoples R China
[3] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Melbourne, Vic 3122, Australia
[4] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; Imitation learning; Generative adversarial networks; Traffic control; Training; Reinforcement learning; Generators; Generative adversarial learning; imitation learning; traffic simulation; trajectory data generation; urban vehicle trajectories; CAR-FOLLOWING MODELS; NETWORK;
D O I
10.1109/TVT.2024.3437412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of smart cities, the collection of vehicle trajectory data through sensors has increased significantly. While many studies have utilized calibrated physical car-following models (CFM) and machine learning techniques for trajectory prediction, these approaches often falter in complex, dynamic traffic scenarios. Addressing this gap, this paper introduces PS-TrajGAIL, a generative adversarial imitation learning framework tailored for urban vehicle trajectory generation. Contrary to conventional discriminative models, PS-TrajGAIL employs a generative model to capture the inherent distribution of urban vehicle trajectories. This framework models the tasks of trajectory generation as a partially observable Markov decision process based on imitation learning. PS-TrajGAIL's architecture features a generator, which simulates vehicle behavior to produce synthetic trajectories, and a discriminator that distinguishes between authentic and generated trajectories. In addition, the driving policy within the generator is fine-tuned using the Trust Region Policy Optimization (TRPO) algorithm, ensuring safety in vehicle driving. Experimental evaluations on both synthetic and real-world datasets highlight that PS-TrajGAIL notably surpasses existing baselines and state-of-the-art approaches in trajectory generation.
引用
收藏
页码:18237 / 18249
页数:13
相关论文
共 50 条
  • [31] Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications
    Chih-Chung Hsu
    Li-Wei Kang
    Shih-Yu Chen
    I-Shan Wang
    Ching-Hao Hong
    Chuan-Yu Chang
    Multimedia Tools and Applications, 2023, 82 : 10763 - 10780
  • [32] Generative Adversarial Imitation Learning from Human Behavior with Reward Shaping
    Li, Jiangeng
    Huang, Shuai
    Xu, Xin
    Zuo, Guoyu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 6254 - 6259
  • [33] AugGAIL : Augmented generative adversarial imitation learning for robotic manipulation tasks
    Jung E.
    Lee S.
    Kim I.
    Journal of Institute of Control, Robotics and Systems, 2020, 26 (05) : 325 - 334
  • [34] Robotic Peg-in-hole Assembly Based on Generative Adversarial Imitation Learning with Hindsight Transformation
    Cai, Yifan
    Song, Jingzhou
    Gong, Xinglong
    Zhang, Tengfei
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1128 - 1134
  • [35] Generative Adversarial Imitation Learning Based Bicycle Behaviors Simulation on Road Segments
    Wei, Shuqiao
    Ni, Ying
    Sun, Jian
    Qiu, Hongtong
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (04): : 105 - 115
  • [36] Autonomous underwater vehicle formation control and obstacle avoidance using multi-agent generative adversarial imitation learning
    Fang, Zheng
    Jiang, Dong
    Huang, Jie
    Cheng, Chunxi
    Sha, Qixin
    He, Bo
    Li, Guangliang
    OCEAN ENGINEERING, 2022, 262
  • [37] EN-DIVINE: An Enhanced Generative Adversarial Imitation Learning Framework for Knowledge Graph Reasoning
    Wu, Yuejia
    Zhou, Jiantao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 346 - 356
  • [38] A Pedestrian Trajectory Prediction Model Based on Generative Adversarial Mimicry Learning
    Li, Mingyue
    Fei, Rong
    Li, Aimin
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 262 - 268
  • [39] Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes
    Wang, Lu
    Yu, Wenchao
    Cheng, Wei
    Min, Martin Renqiang
    Zong, Bo
    He, Xiaofeng
    Zha, Hongyuan
    Wang, Wei
    Chen, Haifeng
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1785 - 1795
  • [40] Restored Action Generative Adversarial Imitation Learning from observation for robot manipulator
    Park, Jongcheon
    Han, Seungyong
    Lee, S. M.
    ISA TRANSACTIONS, 2022, 129 : 684 - 690