Joint Multi-User Channel Estimation for RIS-Assisted Massive MIMO Systems

被引:1
作者
Zhou, Lei [1 ,2 ]
Dai, Jisheng [1 ,2 ]
Xu, Weichao [3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Jiangsu Univ, Dept Elect Engn, Zhenjiang 212013, Peoples R China
[3] Guangdong Univ Technol, Dept Automat Control, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Channel estimation; Estimation; Message passing; Multiuser channels; Wireless communication; Training; Massive MIMO; Reconfigurable intelligent surface (RIS); cascaded channel estimation; sparse representation; approximate message passing (AMP); massive MIMO; INTELLIGENT REFLECTING SURFACE; DESIGN;
D O I
10.1109/TWC.2024.3407586
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate channel estimation plays a pivotal role in realizing the passive beamforming gain of reconfigurable intelligent surfaces (RIS). Multi-user RIS-assisted channels exhibit a common sparse structure in the angular domain, which offers the potential to enhance channel estimation performance. Nonetheless, most existing methods simply partition the multi-user channel estimation problem into multiple sub-problems, which regrettably neglect the exploitation of the shared property across different users. In this paper, we formulate a unified multi-user channel estimation problem and propose a computationally efficient message passing approach to jointly extract the common sparsity. We first introduce a new sparse Bayesian learning (SBL) framework for joint multi-user RIS-assisted channel estimation, where some auxiliary variables and Dirac delta distributions are introduced to handle the intricate interplay of numerous unknown variables within the joint sparse channel representation. Subsequently, we devise a reassembled message passing algorithm for the associated joint Bayesian inference, incorporating a three-stage expected propagation approximation (EPA) procedure along with a novel reassembling technology to facilitate variable decoupling and ensure reliable sparse signal recovery. Simulation results demonstrate the superiority of the proposed algorithm over the state-of-the-art counterparts.
引用
收藏
页码:13993 / 14006
页数:14
相关论文
共 55 条
[1]   Channel Estimation for Distributed Intelligent Reflecting Surfaces Assisted Multi-User MISO Systems [J].
Alwazani, Hibatallah ;
Nadeem, Qurrat-Ul-Ain ;
Chaaban, Anas .
2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
[2]   Low-Complexity Channel Estimation and Passive Beamforming for RIS-Assisted MIMO Systems Relying on Discrete Phase Shifts [J].
An, Jiancheng ;
Xu, Chao ;
Gan, Lu ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) :1245-1260
[3]   TRICE: A Channel Estimation Framework for RIS-Aided Millimeter-Wave MIMO Systems [J].
Ardah, Khaled ;
Gherekhloo, Sepideh ;
de Almeida, Andre L. F. ;
Haardt, Martin .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :513-517
[4]   Fast Variational Bayesian Inference for Temporally Correlated Sparse Signal Recovery [J].
Cao, Zheng ;
Dai, Jisheng ;
Xu, Weichao ;
Chang, Chunqi .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :214-218
[5]   Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User mmWave MIMO Systems [J].
Chen, Jie ;
Liang, Ying-Chang ;
Cheng, Hei Victor ;
Yu, Wei .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (10) :6853-6869
[6]   Real-Valued Sparse Bayesian Learning for DOA Estimation With Arbitrary Linear Arrays [J].
Dai, Jisheng ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :4977-4990
[7]   FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry [J].
Dai, Jisheng ;
Liu, An ;
Lau, Vincent K. N. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (10) :2584-2599
[8]   Channel Estimation for Intelligent Reflecting Surface Assisted MIMO Systems: A Tensor Modeling Approach [J].
de Araujo, Gilderlan T. ;
de Almeida, Andre L. F. ;
Boyer, Remy .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) :789-802
[9]   A State-of-the-Art Survey on Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Networks [J].
Ding, Zhiguo ;
Lv, Lu ;
Fang, Fang ;
Dobre, Octavia A. ;
Karagiannidis, George K. ;
Al-Dhahir, Naofal ;
Schober, Robert ;
Poor, H. Vincent .
PROCEEDINGS OF THE IEEE, 2022, 110 (09) :1358-1379
[10]   Sparse Channel Estimation With Surface Clustering for IRS-Assisted OFDM Systems [J].
Dong, Haoyang ;
Ji, Chen ;
Zhou, Lei ;
Dai, Jisheng ;
Ye, Zhongfu .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (02) :1083-1095