Realizing two-qubit gates through mode engineering on a trapped-ion quantum computer

被引:0
作者
Li, Ming [1 ]
Nguyen, Nhung H. [2 ,3 ]
Green, Alaina M. [2 ,3 ]
Amini, Jason [1 ]
Linke, Norbert M. [2 ,3 ,4 ]
Nam, Yunseong [1 ,3 ]
机构
[1] IonQ, College Park, 20740, MD
[2] Joint Quantum Institute, Department of Physics, University of Maryland, College Park, 20742, MD
[3] Department of Physics, University of Maryland, College Park, 20742, MD
[4] Duke Quantum Center, Department of Physics, Duke University, Durham, 27708, NC
基金
美国国家科学基金会;
关键词
Integrated circuit design - Optical variables control - Pulse modulation - Quantum electronics - Quantum optics - Qubits;
D O I
10.1103/PhysRevA.111.022622
中图分类号
学科分类号
摘要
Two-qubit gates are a fundamental constituent of a quantum computer and typically its most challenging operation. In a trapped-ion quantum computer, this is typically implemented with laser beams which are modulated in amplitude, frequency, phase, or a combination of these. The required modulation becomes increasingly more complex as the quantum computer becomes larger, complicating the control hardware design. Here we develop a simple method to essentially remove the pulse-modulation complexity by engineering the normal modes of the ion chain. We experimentally test the feasibility of the method in a three-ion chain. This opens up the possibility to trade off complexity between the design of the trapping fields and the optical control system, which will help scale the ion-trap quantum computing platform. © 2025 American Physical Society.
引用
收藏
相关论文
共 33 条
  • [1] Ballance C. J., Harty T. P., Linke N. M., Sepiol M. A., Lucas D. M., Phys. Rev. Lett, 117, (2016)
  • [2] Gaebler J. P., Tan T. R., Lin Y., Wan Y., Bowler R., Keith A. C., Glancy S., Coakley K., Knill E., Leibfried D., Wineland D. J., Phys. Rev. Lett, 117, (2016)
  • [3] Levine H., Keesling A., Omran A., Bernien H., Schwartz S., Zibrov A. S., Endres M., Greiner M., Vuletic V., Lukin M. D., Phys. Rev. Lett, 121, (2018)
  • [4] Google Quantum AI, Nature (London), 595, (2021)
  • [5] Nagerl H. C., Leibfried D., Rohde H., Thalhammer G., Eschner J., Schmidt-Kaler F., Blatt R., Phys. Rev. A, 60, (1999)
  • [6] Molmer K., Sorensen A., Multiparticle entanglement of hot trapped ions, Phys. Rev. Lett, 82, (1999)
  • [7] Sorensen A., Molmer K., Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A, 62, (2000)
  • [8] Wu Y., Wang S.-T., Duan L.-M., Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear paul trap, Phys. Rev. A, 97, (2018)
  • [9] Zhu S.-L., Monroe C., Duan L.-M., Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams, Europhys. Lett, 73, (2006)
  • [10] Zhu S.-L., Monroe C., Duan L.-M., Trapped ion quantum computation with transverse phonon modes, Phys. Rev. Lett, 97, (2006)