Insulator-to-Metal Transition and Isotropic Gigantic Magnetoresistance in Layered Magnetic Semiconductors

被引:1
|
作者
Acharya, Gokul [1 ]
Neupane, Bimal [2 ]
Hsu, Chia-Hsiu [3 ,4 ]
Yang, Xian P. [5 ]
Graf, David [6 ]
Choi, Eun Sang [6 ]
Pandey, Krishna [7 ]
Nabi, Md Rafique Un [1 ,8 ]
Chhetri, Santosh Karki [1 ]
Basnet, Rabindra [1 ]
Rahman, Sumaya [7 ]
Wang, Jian [9 ]
Hu, Zhengxin [10 ,11 ]
Da, Bo [10 ]
Churchill, Hugh O. H. [1 ,7 ,8 ]
Chang, Guoqing [3 ]
Hasan, M. Zahid [5 ,12 ,13 ]
Wang, Yuanxi [2 ]
Hu, Jin [1 ,7 ,8 ]
机构
[1] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[2] Univ North Texas, Dept Phys, Denton, TX 76205 USA
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] Okinawa Inst Sci & Technol OIST, Quantum Mat Sci Unit, Onna, Okinawa 9040495, Japan
[5] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA
[6] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[7] Univ Arkansas, Inst Nanosci & Engn, Mat Sci & Engn Program, Fayetteville, AR 72701 USA
[8] Univ Arkansas, MonArk NSF Quantum Foundry, Fayetteville, AR 72701 USA
[9] Wichita State Univ, Dept Chem & Biochem, Wichita, KS 67260 USA
[10] Natl Inst Mat Sci NIMS, Ctr Basic Res Mat, Tsukuba, Ibaraki 3050047, Japan
[11] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[12] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[13] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
exchange splitting; insulator-to-metal transition; isotropic magneto-transport; magnetoresistance; ANISOTROPIC MAGNETORESISTANCE; GIANT MAGNETORESISTANCE; TRANSPORT;
D O I
10.1002/adma.202410655
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetotransport, the response of electrical conduction to external magnetic field, acts as an important tool to reveal fundamental concepts behind exotic phenomena and plays a key role in enabling spintronic applications. Magnetotransport is generally sensitive to magnetic field orientations. In contrast, efficient and isotropic modulation of electronic transport, which is useful in technology applications such as omnidirectional sensing, is rarely seen, especially for pristine crystals. Here a strategy is proposed to realize extremely strong modulation of electron conduction by magnetic field which is independent of field direction. GdPS, a layered antiferromagnetic semiconductor with resistivity anisotropies, supports a field-driven insulator-to-metal transition with a paradoxically isotropic gigantic negative magnetoresistance insensitive to magnetic field orientations. This isotropic magnetoresistance originates from the combined effects of a near-zero spin-orbit coupling of Gd3+-based half-filling f-electron system and the strong on-site f-d exchange coupling in Gd atoms. These results not only provide a novel material system with extraordinary magnetotransport that offers a missing block for antiferromagnet-based ultrafast and efficient spintronic devices, but also demonstrate the key ingredients for designing magnetic materials with desired transport properties for advanced functionalities. Utilizing strong exchange splitting in isotropic magnetic material, magnetic field-induced insulator-to-metal transition accompanied by gigantic, isotropic magnetoresistance is realized in a pristine material for the first time in a layered compound, holding great promise to revolutionize device technologies. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optical study of the insulator-to-metal transition in LaxMnO3 thin films
    Mohamed, W. S.
    Maselli, P.
    Calvani, P.
    Baldassarre, L.
    Orgiani, P.
    Galdi, A.
    Maritato, L.
    Nucara, A.
    MATERIALS RESEARCH EXPRESS, 2014, 1 (03):
  • [2] Magnetoresistance and magnetic field induced metal-insulator transition in intercalated amorphous carbon
    Kumari, L
    Subramanyam, SV
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 129 (1-3): : 48 - 53
  • [3] Unconventional insulator-to-metal phase transition in Mn3Si2Te6
    Gu, Yanhong
    Smith, Kevin A.
    Saha, Amartyajyoti
    De, Chandan
    Won, Choong-jae
    Zhang, Yang
    Lin, Ling-Fang
    Cheong, Sang-Wook
    Haule, Kristjan
    Ozerov, Mykhaylo
    Birol, Turan
    Homes, Christopher
    Dagotto, Elbio
    Musfeldt, Janice L.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Self-consistent perturbational study of insulator-to-metal transition in Kondo insulators due to strong magnetic field
    Saso, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (04) : 1175 - 1179
  • [5] Magnetic field-induced insulator-to-metal transition in perovskite manganites Eu1-xSrxMnO3
    Nakamura, S
    Tadokoro, Y
    Shan, YJ
    Nakamura, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (05) : 1485 - 1487
  • [6] Insulator-to-Metal Transition at Oxide Interfaces Induced by WO3 Overlayers
    Mattoni, Giordano
    Baek, David J.
    Manca, Nicola
    Verhagen, Nils
    Groenendijk, Dirk J.
    Kourkoutis, Lena F.
    Filippetti, Alessi
    Caviglia, Andrea D.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) : 42336 - 42343
  • [7] Mott insulator-to-metal transition in yttrium-doped CaIrO3
    Gunasekera, J.
    Chen, Y.
    Kremenak, J. W.
    Miceli, P. F.
    Singh, D. K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (05)
  • [8] Ambipolar Insulator-to-Metal Transition in Black Phosphorus by Ionic-Liquid Gating
    Saito, Yu
    Iwasa, Yoshihiro
    ACS NANO, 2015, 9 (03) : 3192 - 3198
  • [9] Ultrafast Spin Dynamics and Photoinduced Insulator-to-Metal Transition in a-RuCl3
    Zhang, Jin
    Tancogne-Dejean, Nicolas
    Xian, Lede
    Bostrom, Emil Vinas
    Claassen, Martin
    Kennes, Dante M.
    Rubio, Angel
    NANO LETTERS, 2023, 23 (18) : 8712 - 8718