Deep learning training dynamics analysis for single-cell data

被引:0
|
作者
Karin, Jonathan [1 ]
Mintz, Reshef [1 ]
机构
[1] Hebrew Univ Jerusalem, Jerusalem, Israel
关键词
D O I
10.1038/s43588-024-00728-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:886 / 887
页数:2
相关论文
共 50 条
  • [41] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Lin, Xiang
    Tian, Tian
    Wei, Zhi
    Hakonarson, Hakon
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
    Md Tauhidul Islam
    Lei Xing
    Nature Communications, 14
  • [43] Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
    Islam, Md Tauhidul
    Xing, Lei
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [44] Semi-Supervised Deep Learning for Cell Type Identification From Single-Cell Transcriptomic Data
    Dong, Xishuang
    Chowdhury, Shanta
    Victor, Uboho
    Li, Xiangfang
    Qian, Lijun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1492 - 1505
  • [45] Hierarchical progressive learning of cell identities in single-cell data
    Michielsen, Lieke
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [46] Hierarchical progressive learning of cell identities in single-cell data
    Lieke Michielsen
    Marcel J. T. Reinders
    Ahmed Mahfouz
    Nature Communications, 12
  • [47] Analysis of transcriptome of single-cell RNA sequencing data using machine learning
    Rajesh, Mothe
    Martha, Sheshikala
    SOFT COMPUTING, 2023, 27 (13) : 9131 - 9141
  • [48] CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning
    Zhou, Zihan
    Zhang, Jinyang
    Zheng, Xin
    Pan, Zhicheng
    Zhao, Fangqing
    Gao, Yuan
    ADVANCED SCIENCE, 2024, 11 (14)
  • [49] Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data
    Ethan Bahl
    Snehajyoti Chatterjee
    Utsav Mukherjee
    Muhammad Elsadany
    Yann Vanrobaeys
    Li-Chun Lin
    Miriam McDonough
    Jon Resch
    K. Peter Giese
    Ted Abel
    Jacob J. Michaelson
    Nature Communications, 15
  • [50] Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data
    Bahl, Ethan
    Chatterjee, Snehajyoti
    Mukherjee, Utsav
    Elsadany, Muhammad
    Vanrobaeys, Yann
    Lin, Li-Chun
    Mcdonough, Miriam
    Resch, Jon
    Giese, K. Peter
    Abel, Ted
    Michaelson, Jacob J.
    NATURE COMMUNICATIONS, 2024, 15 (01)