Epileptic Seizure Prediction using Stacked CNN-BiLSTM: A Novel Approach

被引:1
|
作者
Quadri Z.F. [1 ]
Akhoon M.S. [2 ]
Loan S.A. [1 ]
机构
[1] Department of Electronics and Communication Engineering, Jamia Millia Islamia, New Delhi
[2] Department of Electronics Engineering, Universiti Sains Malaysia
来源
IEEE Transactions on Artificial Intelligence | 2024年 / 5卷 / 11期
关键词
Bi-LSTM; Brain modeling; CNN; Computational modeling; Computer architecture; Deep Learning; Deep learning; EEG; Electroencephalography; Epilepsy; Feature extraction; Predictive models; Seizure; seizure prediction;
D O I
10.1109/TAI.2024.3410928
中图分类号
学科分类号
摘要
In this work, we propose a novel hybrid architecture for epileptic seizure prediction, utilizing a deep learning approach by stacking the Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) layers. The proposed approach employs a series of one dimensional (1D) convolution layers, each with several filters with lengths varying exponentially. The Deep Bi-LSTM layers are subsequently integrated to the design to create a densely connected feed-forward structure. The model effectively prioritizes spatio-temporal information, thus extracting key insights for identification of inter-ictal and preictal features. The Boston Children’s Hospital–MIT datasets (CHB-MIT) are utilized and 5-fold cross validation is applied for training the model. The proposed model has undergone comprehensive evaluations, with sensitivity of 97.63%, precision of 98.30%, F1-Score of 98.25%, and an AUC-ROC of 0.9 across six patients. It can predict seizures 30 minutes before their onset, allowing individuals ample time to take preventive measures. Compared to the state-of-the-art approach, our model achieves a higher accuracy by 3.44% and demonstrating improved prediction times. IEEE
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [1] Multi-view Stacked CNN-BiLSTM (MvS CNN-BiLSTM) for urban PM2.5 concentration prediction of India's polluted cities
    Kumar, Subham Vipin
    JOURNAL OF CLEANER PRODUCTION, 2024, 444
  • [2] PM2.5 Concentration Prediction Based on CNN-BiLSTM and Attention Mechanism
    Zhang, Jinsong
    Peng, Yongtao
    Ren, Bo
    Li, Taoying
    ALGORITHMS, 2021, 14 (07)
  • [3] A novel approach of data race detection based on CNN-BiLSTM hybrid neural network
    Yang Zhang
    Jiali Yan
    Liu Qiao
    Hongbin Gao
    Neural Computing and Applications, 2022, 34 : 15441 - 15455
  • [4] A novel approach of data race detection based on CNN-BiLSTM hybrid neural network
    Zhang, Yang
    Yan, Jiali
    Qiao, Liu
    Gao, Hongbin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15441 - 15455
  • [5] A CNN-BiLSTM model with attention mechanism for earthquake prediction
    Kavianpour, Parisa
    Kavianpour, Mohammadreza
    Jahani, Ehsan
    Ramezani, Amin
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17): : 19194 - 19226
  • [6] A CNN-BiLSTM model with attention mechanism for earthquake prediction
    Parisa Kavianpour
    Mohammadreza Kavianpour
    Ehsan Jahani
    Amin Ramezani
    The Journal of Supercomputing, 2023, 79 : 19194 - 19226
  • [7] Epileptic Seizure Prediction over EEG Data using Hybrid CNN-SVM Model with Edge Computing Services
    Agarwal, Punjal
    Wang, Hwang-Cheng
    Srinivasan, Kathiravan
    22ND INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS (CSCC 2018), 2018, 210
  • [8] Evaluating CNN Methods for Epileptic Seizure Type Classification Using EEG Data
    Rivera, Manuel J.
    Sanchis, Javier
    Corcho, Oscar
    Teruel, Miguel A.
    Trujillo, Juan
    IEEE ACCESS, 2024, 12 : 75483 - 75495
  • [9] Generalized Loss-Based CNN-BiLSTM for Stock Market Prediction
    Zhao, Xiaosong
    Liu, Yong
    Zhao, Qiangfu
    INTERNATIONAL JOURNAL OF FINANCIAL STUDIES, 2024, 12 (03):
  • [10] A hybrid 1D CNN-BiLSTM model for epileptic seizure detection using multichannel EEG feature fusion
    Ravi, Swathy
    Radhakrishnan, Ashalatha
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (03)