Effective sensing mechanisms of O2 and CO on SnO2 (110) surface: a DFT study

被引:0
作者
Lipsky, Felipe [1 ]
Gouveia, Amanda F. [1 ]
Sensato, Fabricio R. [2 ]
Oliva, Monica [1 ]
Longo, Elson [3 ]
San-Miguel, Miguel A. [4 ]
Andres, Juan [1 ]
机构
[1] Univ Jaume 1, Castellon de La Plana 12071, Castello, Spain
[2] Univ Fed Sao Paulo, BR-09913030 Diadema, SP, Brazil
[3] Univ Fed Sao Carlos, CDMF, BR-13565905 Sao Carlos, SP, Brazil
[4] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
METAL-OXIDE NANOSTRUCTURES; TOTAL-ENERGY CALCULATIONS; GAS SENSORS; OXYGEN; ADSORPTION; NANOPARTICLES; POINTS; MODEL; H-2;
D O I
10.1039/d4ta07615j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dissociative adsorption of O2 on SnO2 is pivotal for its gas-sensing performance, yet the underlying mechanisms remain open to debate and hamper widespread applications. In this study, we introduce a novel mechanism that advances the understanding of gas adsorption and activation on metal oxide semiconductor surfaces, coupling O2 dissociation and CO oxidation in a unified process that redefines the Mars-van Krevelen mechanism. Detailed DFT simulations demonstrate that the electronic and structural properties of the SnO2 (110) surface trigger the spontaneous stabilization of a neutral polaron upon oxygen vacancy formation, boosting the activation of O2 and directly coupling its dissociation with CO oxidation, resulting in a highly energetically efficient process. Our findings mark a paradigm shift in the understanding of O2-driven gas-sensing technology and showcases how the polaron reduces activation barriers and stabilizes key intermediates, optimizing the catalytic cycle and the sensor activity. This work paves the way for the development of high-performance SnO2-based sensors by leveraging defect engineering and polaron dynamics.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 68 条
[1]   Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review [J].
Al-Hashem, Mohamad ;
Akbar, Sheikh ;
Morris, Patricia .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 301
[2]   Gabedit-A Graphical User Interface for Computational Chemistry Softwares [J].
Allouche, Abdul-Rahman .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :174-182
[3]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[4]   Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds [J].
Barsan, N. ;
Huebner, M. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :510-517
[5]   CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study [J].
Bendavid, Leah Isseroff ;
Carter, Emily A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (49) :26048-26059
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   CO sensing properties and mechanism of Pd doped SnO2 thick-films [J].
Chen, Yanping ;
Qin, Hongwei ;
Hu, Jifan .
APPLIED SURFACE SCIENCE, 2018, 428 :207-217
[8]   Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials [J].
Degler, David ;
Weimar, Udo ;
Barsan, Nicolae .
ACS SENSORS, 2019, 4 (09) :2228-2249
[9]   Evaluating the power-law response for tin dioxide nanostructured sensors in the presence of oxygen and reducing gases [J].
Desimone, P. M. ;
Schipani, F. ;
Procaccini, R. ;
Mirabella, D. A. ;
Aldao, C. M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 370
[10]   Semiconductor metal oxide gas sensors: A review [J].
Dey, Ananya .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 229 :206-217