Structure, electrophysical, optical, and magnetic properties of composites (1-x)PbFe12O19-xPbTiO3

被引:0
|
作者
Abdulvakhidov, Kamaludin [1 ]
Yunusov, Nurzod [2 ]
Otajonov, Salim [2 ]
Ergashev, Ravshan [2 ]
Li, Zhengyou [1 ]
Abdulvakhidov, Bashir [3 ]
Kallaev, Suleiman [4 ]
Manukyan, Aram [5 ]
Alshoekh, Abeer [1 ]
Sirota, Marina [1 ]
Soldatov, Alexander [1 ]
Nazarenko, Alexander [6 ]
Plyaka, Pavel [6 ]
Ubushaeva, Elza [7 ]
Gyulasaryan, Harutyun [5 ]
机构
[1] Southern Fed Univ, Sladkova 178-24, Rostov Na Donu 344090, Russia
[2] Fergana State Univ, Murabbiylar 19, Fergana 100150, Uzbekistan
[3] Dagestan State Univ, Gadgieva 43a, Makhachkala 367000, Russia
[4] Russian Acad Sci, Dagestan Fed Res Ctr, Makhachkala 532096, Russia
[5] NAS Armenia, Inst Phys Res, Ashtarak 0204, Armenia
[6] Russian Acad Sci, Southern Sci Ctr, Chekhova 41, Rostov Na Donu 344006, Russia
[7] Moscow Inst Aviat Technol, Volokolamskoe Shosse 4, Moscow 125993, Russia
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2024年 / 130卷 / 12期
关键词
Composites; (1-x)PbFe12O19-xPbTiO3; Mechanical activation; Impedance spectroscopy; Band gap; FORC analysis; PBFE12O19; PARTICLES; NANOCOMPOSITES; BAFE12O19;
D O I
10.1007/s00339-024-08032-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the results of studying the structural features and physical properties of two-component composites (1-x)PbFe12O19-xPbTiO3, obtained from pre-synthesized and mechanically activated powders. To control the physical properties of composites, in addition to changing the dopant (PbTiO3) concentration within the range of 0.2-0.8 in steps of 0.2, the method of mechanical activation (nanostructuring) was used. This method implies that the Bridgman anvils simultaneously apply a compressive force to the powder placed between them and produce a shear deformation by rotating the lower anvil. X-ray diffraction revealed a sharp decrease in the unit cell parameters of the dopant of the initial composition at x = 0.4, followed by a similarly sharp leap in the parameters of the hexagonal cell after mechanical activation. The dimensions of the coherent scattering regions (D) of the PbFe12O19 component after mechanical activation decreased by more than a half, while the dislocation density (rho D) and the magnitude of microstrains (epsilon) increased by more than an order of magnitude. It was found that the magnetic phase transition temperature of composites decreases by about 14 degrees C with increasing dopant concentration, and the nanostructuring of composites leads to a further decrease in the transition temperature by another 12-36 degrees C, depending on the dopant concentration. The band gap Eg of the nanostructured compositions increases by approximately 0.3 eV regardless of the dopant concentration. Using the impedance spectroscopy method, it has been discovered that the dependence of the grain capacitance Cg(T) in the temperature range of 150-350 degrees C has a bell-shaped form, which is explained in terms of Maxwell-Wagner polarization, where the relaxation is of the non-Debye type.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Preparation, Structural, and Dielectric Properties of (1-x)Pb(Zr0.52Ti0.48)O3-x BiFeO3 Composites
    Ahabboud, Malika
    Gouitaa, Najwa
    Ahjyaje, Fatimazahra
    Lamcharfi, Taj-dine
    Abdi, Farid
    Haddad, Mustapha
    IRANIAN JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, 2024, 21 (04) : 48 - 60
  • [32] Crystal structure, electronic properties and optical band gap of KLa(1-x)Eux(PO3)4
    Ferhi, M.
    Horchani-Naifer, K.
    Bouzidi, C.
    Elhouichet, H.
    Ferid, M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 609 : 222 - 227
  • [33] The structural and magnetic investigation of (x) BiFe0.95Co0.05O3: (1-x) La0.7Ca0.3MnO3 composites
    Zhang, Hongguang
    Fu, Dexiang
    Wang, Yang
    Xie, Liang
    Li, Yongtao
    Chen, Wei
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (12)
  • [34] Role of competing phases in the structural, magnetic and dielectric relaxation for (1-x)CoFe2O4+(x)BaTiO3 composites
    Atif, M.
    Ahmed, S.
    Nadeem, M.
    Ali, M. Kashif
    Idrees, M.
    Groessinger, R.
    Turtelli, R. Sato
    CERAMICS INTERNATIONAL, 2016, 42 (13) : 14618 - 14626
  • [35] The structural and magnetic investigation of (x) BiFe0.95Co0.05O3: (1-x) La0.7Ca0.3MnO3 composites
    Hongguang Zhang
    Dexiang Fu
    Yang Wang
    Liang Xie
    Yongtao Li
    Wei Chen
    Journal of Nanoparticle Research, 2017, 19
  • [36] Magneto-electric properties of xNi0.7Zn0.3Fe2O4 - (1-x)BaTiO3 multiferroic composites
    Dzunuzovic, A. S.
    Petrovic, M. M. Vijatovic
    Bobic, J. D.
    Ilic, N. I.
    Ivanov, M.
    Grigalaitis, R.
    Banys, J.
    Stojanovic, B. D.
    CERAMICS INTERNATIONAL, 2018, 44 (01) : 683 - 694
  • [37] Magnetic and Mossbauer spectral studies of x (NiFe2O4) + (1-x)(SrFe12O19), x=0, 0.2, 0.4, 0.6, 0.8 and 1.0 nanocomposites
    Singhal, Sonal
    Chandra, Kailash
    HYPERFINE INTERACTIONS, 2008, 183 (1-3): : 93 - 97
  • [38] Magnetic and Magnetocaloric Study of Polycrystalline (1-x) La0.65Ca0.35MnO3/xFe2O3 Composites
    Marzouki-Ajmi, A.
    Cheikrouhou-Koubaa, W.
    Cheikhrouhou, A.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (01) : 103 - 108
  • [39] Optical Characterization and Electrochemical Properties of Cd(1-x)Cu(x)S/rGO Composites Synthesized Through Reflux Method
    Dorothy, Subramani
    Lavanya, Thirugnanam
    Punithamurthy, Kaliaperumal
    Jayavel, Ramasamy
    Satheesh, Kaveri
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (09) : 9716 - 9721
  • [40] Magnetic Properties and Critical Current of Superconducting Nanocomposites (1-x)YBa2Cu3O7- + xCuO
    Lepeshev, A. A.
    Patrin, G. S.
    Yurkin, G. Yu.
    Vasiliev, A. D.
    Nemtsev, I. V.
    Gokhfeld, D. M.
    Balaev, A. D.
    Demin, V. G.
    Bachurina, E. P.
    Karpov, I. V.
    Ushakov, A. V.
    Fedorov, L. Yu.
    Irtyugo, L. A.
    Petrov, M. I.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (12) : 3841 - 3845