A general solution for rotating lattices of identical point vortices

被引:0
作者
Robertson, Phillip [1 ,2 ,3 ]
机构
[1] RAND Corp, Santa Monica, CA 90407 USA
[2] Google Inc, Mountain View, CA 94043 USA
[3] Robertson Res LLC, San Francisco, CA 94105 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2300期
关键词
N-vortex problem; geometric algebra; relative equilibria; Clifford algebra; Hamiltonian dynamics; amplituhedron;
D O I
10.1098/rspa.2023.0237
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rotating equilibrium solutions of N identical point vortices are the stationary energy states of a higher-dimensional object projected to the x-y plane, in this case, an (N-1)-dimensional regular simplex. Parameterizing the point vortex Hamiltonian with this fundamental geometrical object leads to a simple bivector condition, which contains the equilibrium states and resolves the origin of the asymmetric solutions. This novel approach uses the geometric product and the multivector derivative, partial derivative psi, of the Hamiltonian in the geometric algebra, Cl(N-1,0) to find a geometric condition that determines the equilibrium states. The resulting bivector equation is then used as the input to an optimizer, which rotates a simplex until the equilibrium condition is met, leading to a wealth of new solutions. If the vertices of the oriented simplex are projected to the x-axis, the values form the roots of the Hermite polynomials, HN(x), and obey the Stieltjes relations, capturing the collinear solutions. The vortex simplex exhibits a striking geometrical connection with the amplituhedron of quantum field theory and gives deep insight into the quantization of a classical system.
引用
收藏
页数:23
相关论文
共 21 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Vortex triple rings [J].
Aref, H ;
van Buren, M .
PHYSICS OF FLUIDS, 2005, 17 (05) :1-21
[3]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[4]   Point vortices exhibit asymmetric equilibria [J].
Aref, H ;
Vainchtein, DL .
NATURE, 1998, 392 (6678) :769-770
[5]   Point vortex dynamics: A classical mathematics playground [J].
Aref, Hassan .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[6]   Relative equilibria of point vortices and the fundamental theorem of algebra [J].
Aref, Hassan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132) :2168-2184
[7]   The Amplituhedron [J].
Arkani-Hamed, Nima ;
Trnka, Jaroslav .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10)
[8]  
Coxeter HSM., 1948, Regular polytopes, P250
[9]  
Doran C., 2003, Geometric Algebra for Physicists, DOI DOI 10.1017/CBO9780511807497
[10]  
Dorst L., 2007, Geometric algebra for computer science, DOI [10.1016/B978-012369465-2/50004-9, DOI 10.1016/B978-012369465-2/50004-9]