Assessing Therapeutic Nanoparticle Accumulation in Tumors Using Nanobubble-Based Contrast-Enhanced Ultrasound Imaging

被引:7
作者
Cooley, Michaela B. [1 ]
Wegierak, Dana [1 ]
Perera, Reshani [2 ]
Abenojar, Eric [2 ]
Nittayacharn, Pinunta [2 ,3 ]
Berg, Felipe M. [1 ,4 ]
Kim, Youjoung [1 ]
Kolios, Michael C. [5 ,6 ,7 ]
Exner, Agata A. [1 ,2 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[3] Mahidol Univ, Fac Engn, Dept Biomed Engn, Nakhon Pathom 73170, Thailand
[4] Hosp Israelita Albert Einstein, BR-05652900 Sao Paulo, Brazil
[5] Toronto Metropolitan Univ, Dept Phys, Toronto, ON M5B 2K3, Canada
[6] Unity Hlth Toronto, St Michaels Hosp, Inst Biomed Engn Sci & Technol iBEST, Toronto, ON M5B 2K3, Canada
[7] Toronto Metropolitan Univ, Toronto, ON M5B 2K3, Canada
关键词
nanobubbles; ultrasound contrast agents; ultrasound; companion nanoparticles; oncology; EPR; tumors; INTERSTITIAL FLUID PRESSURE; LIPOSOMAL DOXORUBICIN; DRUG-DELIVERY; RADIATION RISK; OVARIAN-CANCER; PERMEABILITY; RETENTION; AGENTS; TIME; COMBINATION;
D O I
10.1021/acsnano.4c11805
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study explores the challenges associated with nanoparticle-based drug delivery to the tumor parenchyma, focusing on the widely utilized enhanced permeability and retention effect (EPR). While EPR has been a key strategy, its inconsistent clinical success lacks clear mechanistic understanding and is hindered by limited tools for studying relevant phenomena. This work introduces an approach that employs multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a nanoscale contrast agent for noninvasive, real-time examination of tumor microenvironment characteristics. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features, (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma, and (3) be used to predict nanotherapeutic efficacy. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability. LS174T tumors consistently showed significantly different time intensity curve (TIC) parameters, including area under the rising curve (AUCR, 2.7x) and time to peak intensity (TTP, 1.9x) compared to U87 tumors. Crucially, a recently developed decorrelation time (DT) parameter specific to NB CEUS dynamics successfully predicted the distribution of doxorubicin-loaded liposomes within the tumor parenchyma (r = 0.86 +/- 0.13). AUCR, TTP, and DT were used to correlate imaging findings to nanotherapeutic response with 100% accuracy in SKOV-3 tumors. These findings suggest that NB-CEUS parameters can effectively discern tumor vascular permeability, serving as a biomarker for identifying tumor characteristics and predicting the responsiveness to nanoparticle-based therapies. The observed differences between LS174T and U87 tumors and the accurate prediction of nanotherapeutic efficacy in SKOV-3 tumors indicate the potential utility of this method in predicting treatment efficacy and evaluating EPR in diseases characterized by pathologically permeable vasculature. Ultimately, this research contributes valuable insights into refining drug delivery strategies and assessing the broader applicability of EPR-based approaches.
引用
收藏
页码:33181 / 33196
页数:16
相关论文
共 120 条
[61]   64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer [J].
Lee, Helen ;
Shields, Anthony F. ;
Siegel, Barry A. ;
Miller, Kathy D. ;
Krop, Ian ;
Ma, Cynthia X. ;
LoRusso, Patricia M. ;
Munster, Pamela N. ;
Campbell, Karen ;
Gaddy, Daniel F. ;
Leonard, Shannon C. ;
Geretti, Elena ;
Blocker, Stephanie J. ;
Kirpotin, Dmitri B. ;
Moyo, Victor ;
Wickham, Thomas J. ;
Hendriks, Bart S. .
CLINICAL CANCER RESEARCH, 2017, 23 (15) :4190-4202
[62]  
LEUNIG M, 1992, CANCER RES, V52, P6553
[63]   Radiation Risk From Medical Imaging [J].
Lin, Eugene C. .
MAYO CLINIC PROCEEDINGS, 2010, 85 (12) :1142-1146
[64]   Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis [J].
Mikada, Mamoru ;
Sukhbaatar, Ariunbuyan ;
Miura, Yoshinobu ;
Horie, Sachiko ;
Sakamoto, Maya ;
Mori, Shiro ;
Kodama, Tetsuya .
CANCER SCIENCE, 2017, 108 (05) :846-852
[65]   Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle [J].
Miller, Miles A. ;
Gadde, Suresh ;
Pfirschke, Christina ;
Engblom, Camilla ;
Sprachman, Melissa M. ;
Kohler, Rainer H. ;
Yang, Katherine S. ;
Laughney, Ashley M. ;
Wojtkiewicz, Gregory ;
Kamaly, Nazila ;
Bhonagiri, Sushma ;
Pittet, Mikael J. ;
Farokhzad, Omid C. ;
Weissleder, Ralph .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (314)
[66]   Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas [J].
Moding, Everett J. ;
Clark, Darin P. ;
Qi, Yi ;
Li, Yifan ;
Ma, Yan ;
Ghaghada, Ketan ;
Johnson, G. Allan ;
Kirsch, David G. ;
Badea, Cristian T. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 85 (05) :1353-1359
[67]   Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response [J].
Moody, Amber S. ;
Dayton, Paul A. ;
Zamboni, William C. .
CANCER DRUG RESISTANCE, 2021, 4 (02) :382-413
[68]   The dance of the nanobubbles: detecting acoustic backscatter from sub-micron bubbles using ultra-high frequency acoustic microscopy [J].
Moore, Michael J. ;
Bodera, Filip ;
Hernandez, Christopher ;
Shirazi, Niloufar ;
Abenojar, Eric ;
Exner, Agata A. ;
Kolios, Michael C. .
NANOSCALE, 2020, 12 (41) :21420-21428
[69]   Heterogeneity of the Tumor Vasculature [J].
Nagy, Janice A. ;
Chang, Sung-Hee ;
Shih, Shou-Ching ;
Dvorak, Ann M. ;
Dvorak, Harold F. .
SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2010, 36 (03) :321-331
[70]   Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? [J].
Nakamura, Yuko ;
Mochida, Ai ;
Choyke, Peter L. ;
Kobayashi, Hisataka .
BIOCONJUGATE CHEMISTRY, 2016, 27 (10) :2225-2238