Heterogeneous latent transfer learning in Gaussian graphical models

被引:0
作者
Wu, Qiong [1 ,2 ,3 ]
Wang, Chi [4 ,5 ]
Chen, Yong [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Blockley Hall 602,423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Hlth AI & Synth Evidence CHASE, Philadelphia, PA 19104 USA
[3] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
[4] Univ Kentucky, Coll Med, Dept Internal Med, Div Canc Biostat, Lexington, KY 40536 USA
[5] Univ Kentucky, Dept Stat, Lexington, KY 40536 USA
基金
美国国家卫生研究院;
关键词
Gaussian graphical model; latent subpopulation; precision matrix; transfer learning; INVERSE COVARIANCE ESTIMATION; EXPRESSION; PHENOTYPE;
D O I
10.1093/biomtc/ujae096
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gaussian graphical models (GGMs) are useful for understanding the complex relationships between biological entities. Transfer learning can improve the estimation of GGMs in a target dataset by incorporating relevant information from related source studies. However, biomedical research often involves intrinsic and latent heterogeneity within a study, such as heterogeneous subpopulations. This heterogeneity can make it difficult to identify informative source studies or lead to negative transfer if the source study is improperly used. To address this challenge, we developed a heterogeneous latent transfer learning (Latent-TL) approach that accounts for both within-sample and between-sample heterogeneity. The idea behind this approach is to "learn from the alike" by leveraging the similarities between source and target GGMs within each subpopulation. The Latent-TL algorithm simultaneously identifies common subpopulation structures among samples and facilitates the learning of target GGMs using source samples from the same subpopulation. Through extensive simulations and real data application, we have shown that the proposed method outperforms single-site learning and standard transfer learning that ignores the latent structures. We have also demonstrated the applicability of the proposed algorithm in characterizing gene co-expression networks in breast cancer patients, where the inferred genetic networks identified many biologically meaningful gene-gene interactions.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer
    Arnes, JB
    Brunet, JS
    Stefansson, I
    Bégin, LR
    Wong, N
    Chappuis, PO
    Akslen, LA
    Foulkes, WD
    [J]. CLINICAL CANCER RESEARCH, 2005, 11 (11) : 4003 - 4011
  • [2] Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas
    Aslan, Katrin
    Turco, Verena
    Blobner, Jens
    Sonner, Jana K.
    Liuzzi, Anna Rita
    Nunez, Nicolas Gonzalo
    De Feo, Donatella
    Kickingereder, Philipp
    Fischer, Manuel
    Green, Ed
    Sadik, Ahmed
    Friedrich, Mirco
    Sanghvi, Khwab
    Kilian, Michael
    Cichon, Frederik
    Wolf, Lara
    Jaehne, Kristine
    von Landenberg, Anna
    Bunse, Lukas
    Sahm, Felix
    Schrimpf, Daniel
    Meyer, Jochen
    Alexander, Allen
    Brugnara, Gianluca
    Roeth, Ralph
    Pfleiderer, Kira
    Niesler, Beate
    von Deimling, Andreas
    Opitz, Christiane
    Breckwoldt, Michael O.
    Heiland, Sabine
    Bendszus, Martin
    Wick, Wolfgang
    Becher, Burkhard
    Platten, Michael
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Latent variable regression for multiple discrete outcomes
    Bandeen-Roche, K
    Miglioretti, DL
    Zeger, SL
    Rathouz, PJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1375 - 1386
  • [4] Predicting with Proxies: Transfer Learning in High Dimension
    Bastani, Hamsa
    [J]. MANAGEMENT SCIENCE, 2021, 67 (05) : 2964 - 2984
  • [5] FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis
    Bernardo, Gina M.
    Lozada, Kristen L.
    Miedler, John D.
    Harburg, Gwyndolen
    Hewitt, Sylvia C.
    Mosley, Jonathan D.
    Godwin, Andrew K.
    Korach, Kenneth S.
    Visvader, Jane E.
    Kaestner, Klaus H.
    Abdul-Karim, Fadi W.
    Montano, Monica M.
    Keri, Ruth A.
    [J]. DEVELOPMENT, 2010, 137 (12): : 2045 - 2054
  • [6] GRB7 Expression and Correlation With HER2 Amplification in Invasive Breast Carcinoma
    Bivin, William W.
    Yergiyev, Oleksandr
    Bunker, Mark L.
    Silverman, Jan F.
    Krishnamurti, Uma
    [J]. APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2017, 25 (08) : 553 - 558
  • [7] Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation
    Cai, T. Tony
    Ren, Zhao
    Zhou, Harrison H.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1 - 59
  • [8] A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
    Cai, Tony
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 594 - 607
  • [9] The joint graphical lasso for inverse covariance estimation across multiple classes
    Danaher, Patrick
    Wang, Pei
    Witten, Daniela M.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 373 - 397
  • [10] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441