Synthesis of high-entropy ceramics (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 by electron beam heating

被引:0
|
作者
Ghyngazov, S. A. [1 ]
Surzhikov, A. P. [1 ]
Vasil'ev, I. P. [1 ]
Boltueva, V. A. [1 ]
Vlasov, V. A. [1 ]
机构
[1] Natl Res Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
High entropy ceramics; Synthesis; Powerful beam of fast electrons;
D O I
10.1016/j.ceramint.2024.08.342
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-entropy ceramic materials are promising for creating functional ceramics for various purposes. The unique properties of such materials make it possible to create new thermal barrier coatings based on them. Reducing costs, time and simplifying the technology of synthesis of high-entropy ceramics is the subject of numerous studies. In this work, the synthesis of high-entropy ceramics (Y0,2Yb0,2Lu0,2Eu0,2Er0,2)3Al5O12 in a powerful beam of fast electrons was carried out for the first time. A powder mixture of initial oxides, placed in the volume of a massive copper cell, was exposed in air to a short-term exposure to a beam of powerful fast electrons with an energy of 2 MeV and a beam current of 12 mA. The speed of movement of the cuvette with the powder mixture under the beam was 1 cm/s. The total irradiation time was 10 s. During the irradiation process, at least 96 % of the mass of the powder mixture melted, resulting in the formation of highly porous ceramic formations in the form of droplets. X-ray phase analysis showed that the melt droplets are high-entropy ceramics (Y0,2Yb0,2Lu0,2Eu0,2Er0,2)3Al5O12. The powder product remaining in the cuvette and not participating in the formation of droplets contains phases of the original oxides and intermediate phases of synthesized high-entropy ceramics. Electron microscopy with EDS showed a uniform distribution of elements on the surface and in the volume of the formed ceramic droplets.
引用
收藏
页码:45037 / 45043
页数:7
相关论文
共 50 条
  • [21] Novel (Sm0.2Lu0.2Yb0.2Y0.2Dy0.2)3TaO7 high-entropy ceramic for thermal barrier coatings
    Sang, Weiwei
    Zhang, Hongsong
    Zhang, Haoming
    Liu, Xuhe
    Chen, Xiaoge
    Xie, Wenbo
    Hou, Ruiyi
    Ma, Hongjun
    Li, Siqi
    Wang, Nan
    Li, Xiaolong
    CERAMICS INTERNATIONAL, 2023, 49 (06) : 9052 - 9059
  • [22] High-entropy (La0.2Nd0.2Y0.2Yb0.2Lu0.2)2Zr2O7 ceramic: A novel dual-phase high-entropy ceramic
    Li, Zhefeng
    Bai, Yu
    Hao, Jiajing
    Dong, Hongying
    Yang, Ting
    Gao, Yuanming
    Ma, Wen
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (10)
  • [23] Fabrication and luminescent properties of highly transparent novel high-entropy (Lu0.2 Y0.2 Gd0.2 Yb0.2 Er0.2 )2 O3 ceramic
    Liu, Hong-Lan
    Zhu, Lin-Lin
    Guo, Wei-Ming
    Lin, Hua-Tay
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 223 : 123 - 130
  • [24] (Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 and (Sc0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 high-entropy rare-earth disilicates as promising materials for environmental barrier coatings
    Luo, Zhongwei
    Jiang, Jianing
    Dong, Shujuan
    Zhou, Changling
    Lue, Kaiyue
    Xie, Yifeng
    Duan, Zhixing
    Huang, Yan
    Chen, Tingyang
    Deng, Longhui
    Cao, Xueqiang
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23342 - 23355
  • [25] Understanding the CMAS corrosion behavior of high-entropy (La0.2Sm0.2Er0.2Y0.2Yb0.2)2Ce2O7
    Xu, Liang
    Gao, Hongfei
    He, Xin
    Niu, Min
    Dai, Zhiwei
    Ni, Haotian
    Su, Lei
    Wang, Hongjie
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (05)
  • [26] Fabrication of novel (Y0.2Gd0.2Lu0.2Sc0.2Tm0.2)2O3 high-entropy transparent ceramics with excellent optical and mechanical performance
    Wang, Bin
    Hao, Yan
    Tang, MingJing
    Zhang, KuiBao
    Yu, Shengquan
    Xu, YuXin
    Li, Xiaoqiang
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 42453 - 42460
  • [27] A high-entropy (Yb0.2Y0.2Lu0.2Ho0.2Er0.2)2Si2O7 environmental barrier coating prepared by atmospheric plasma-spray
    Chen, Zeyu
    Lin, Chucheng
    Zheng, Wei
    Jiang, Caifen
    Song, Xuemei
    Zeng, Yi
    CERAMICS INTERNATIONAL, 2023, 49 (07) : 11323 - 11333
  • [28] Pressureless Sintering of(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance
    Fan, Wenkai
    Yang, Xiao
    Li, Honghua
    Li, Yong
    Li, Jiangtao
    JOURNAL OF INORGANIC MATERIALS, 2025, 40 (02) : 159 - 167
  • [29] Microstructure and magnetic properties of novel high-entropy perovskite ceramics (Gd 0.2 La 0.2 Nd 0.2 Sm 0.2 Y 0.2 )MnO 3
    Qin, Jiedong
    Wen, Zhiqin
    Ma, Bo
    Wu, Zhenyu
    Lv, Yunming
    Yu, Junjie
    Zhao, Yuhong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 597
  • [30] Stable preparation of defective fluorite structure high entropy (Y 0.2 Sm 0.2 Eu 0.2 Er 0.2 Yb 0.2 ) 2 Zr 2 O 7 ceramic powders by molten salt synthesis
    Liu, Tao
    Ma, Beiyue
    Zan, Wenyu
    Liu, Hao
    Ding, Jun
    Ma, Yan
    Deng, Chengji
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 36156 - 36165