Efficient electronic cooling by niobium-based superconducting tunnel junctions

被引:0
|
作者
Hatinen, J. [1 ]
Ronzani, A. [1 ]
Loreto, R. P. [1 ]
Mykkanen, E. [1 ]
Kemppinen, A. [1 ]
Viisanen, K. [1 ]
Rantanen, T. [1 ]
Geisor, J. [1 ]
Lehtinen, J. S. [1 ]
Ribeiro, M. [1 ]
Kaikkonen, J. -P. [1 ]
Prakash, O. [1 ]
Vesterinen, V. [1 ]
Forbom, C. [1 ]
Mannila, E. T. [1 ]
Kervinen, M. [1 ]
Govenius, J. [1 ]
Prunnila, M. [1 ]
机构
[1] VTT Tech Res Ctr Finland, Oulu, Finland
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 06期
基金
芬兰科学院;
关键词
REFRIGERATION; TEMPERATURE;
D O I
10.1103/PhysRevApplied.22.064048
中图分类号
O59 [应用物理学];
学科分类号
摘要
Replacing the bulky cryoliquid-based cooling stages of cryoenabled instruments by chip-scale refrigeration is envisioned to disruptively reduce the system size similar to microprocessors did for computers. Electronic refrigerators based on superconducting tunnel junctions have been anticipated to provide a solution, but reaching the necessary above the 1-K operation temperature range has remained a goal out of reach for several decades. We show efficient electronic refrigeration by Al-AlOx-Nb superconducting tunnel junctions starting from bath temperatures above 2 K. The junctions can deliver electronic cooling power up to approximately mW/mm2, which enables us to demonstrate tunnel-current-driven electron temperature reduction from 2.4 K to below 1.6 K (34% relative cooling) against the phonon bath. Our work shows that the key material of integrated superconducting circuits-niobium-enables powerful cryogenic refrigerator technology. This result is a prerequisite for practical cryogenic chip-scale refrigerators and, at the same time, it introduces a new electrothermal tool for quantum heat-transport experiments.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Superconducting tantalum nitride-based normal metal-insulator-superconductor tunnel junctions
    Chaudhuri, S.
    Maasilta, I. J.
    APPLIED PHYSICS LETTERS, 2014, 104 (12)
  • [12] Electron cooling by diffusive normal metal-superconductor tunnel junctions
    Vasenko, A. S.
    Bezuglyi, E. V.
    Courtois, H.
    Hekking, F. W. J.
    PHYSICAL REVIEW B, 2010, 81 (09):
  • [13] Graphene-Based Magnetic Tunnel Junctions
    Cobas, Enrique
    Friedman, Adaml.
    van't Erve, Olafm. J.
    Robinson, Jeremy T.
    Jonker, Berend T.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 4343 - 4346
  • [14] Graphene As a Tunnel Barrier: Graphene-Based Magnetic Tunnel Junctions
    Cobas, Enrique
    Friedman, Adam L.
    van't Erve, Olaf M. J.
    Robinson, Jeremy T.
    Jonker, Berend T.
    NANO LETTERS, 2012, 12 (06) : 3000 - 3004
  • [15] Electron Cooling with Graphene-Insulator-Superconductor Tunnel Junctions for Applications in Fast Bolometry
    Vischi, Francesco
    Carrega, Matteo
    Braggio, Alessandro
    Paolucci, Federico
    Bianco, Federica
    Roddaro, Stefano
    Giazotto, Francesco
    PHYSICAL REVIEW APPLIED, 2020, 13 (05):
  • [16] A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions
    Anwar, Muhammad Shahbaz
    Robinson, Jason W. A.
    COATINGS, 2021, 11 (09)
  • [17] Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports
    West, Ryan M.
    Tucker, Mark H.
    Braden, Drew J.
    Dumesic, James A.
    CATALYSIS COMMUNICATIONS, 2009, 10 (13) : 1743 - 1746
  • [18] Hydrogen evolution from NaBH4 4 using novel Ni/Pt nanoparticles decorated on a niobium-based composite
    Sperandio, Gabriel Henrique
    de Carvalho, Jessica Passos
    de Jesus, Camilo Bruno Ramos
    Machado Junior, Iterlandes
    Oliveira, Kleryton Luiz Alves de
    Puiatti, Gustavo Alves
    de Jesus, Jemmyson Romario
    Moreira, Renata Pereira Lopes
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 774 - 783
  • [19] Seeking large thermoelectric effects in MgO-based tunnel junctions
    Jia, Xingtao
    Wang, Shizhuo
    Qin, Minghui
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [20] Electron cooling in diffusive normal metal-superconductor tunnel junctions with a spin-valve ferromagnetic interlayer
    Ozaeta, A.
    Vasenko, A. S.
    Hekking, F. W. J.
    Bergeret, F. S.
    PHYSICAL REVIEW B, 2012, 85 (17)