Efficient electronic cooling by niobium-based superconducting tunnel junctions

被引:0
|
作者
Hatinen, J. [1 ]
Ronzani, A. [1 ]
Loreto, R. P. [1 ]
Mykkanen, E. [1 ]
Kemppinen, A. [1 ]
Viisanen, K. [1 ]
Rantanen, T. [1 ]
Geisor, J. [1 ]
Lehtinen, J. S. [1 ]
Ribeiro, M. [1 ]
Kaikkonen, J. -P. [1 ]
Prakash, O. [1 ]
Vesterinen, V. [1 ]
Forbom, C. [1 ]
Mannila, E. T. [1 ]
Kervinen, M. [1 ]
Govenius, J. [1 ]
Prunnila, M. [1 ]
机构
[1] VTT Tech Res Ctr Finland, Oulu, Finland
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 06期
基金
芬兰科学院;
关键词
REFRIGERATION; TEMPERATURE;
D O I
10.1103/PhysRevApplied.22.064048
中图分类号
O59 [应用物理学];
学科分类号
摘要
Replacing the bulky cryoliquid-based cooling stages of cryoenabled instruments by chip-scale refrigeration is envisioned to disruptively reduce the system size similar to microprocessors did for computers. Electronic refrigerators based on superconducting tunnel junctions have been anticipated to provide a solution, but reaching the necessary above the 1-K operation temperature range has remained a goal out of reach for several decades. We show efficient electronic refrigeration by Al-AlOx-Nb superconducting tunnel junctions starting from bath temperatures above 2 K. The junctions can deliver electronic cooling power up to approximately mW/mm2, which enables us to demonstrate tunnel-current-driven electron temperature reduction from 2.4 K to below 1.6 K (34% relative cooling) against the phonon bath. Our work shows that the key material of integrated superconducting circuits-niobium-enables powerful cryogenic refrigerator technology. This result is a prerequisite for practical cryogenic chip-scale refrigerators and, at the same time, it introduces a new electrothermal tool for quantum heat-transport experiments.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Aluminum thickness dependence of spatial profile in niobium-based superconducting tunnel junctions
    Ukibe, M
    Ikeuchi, T
    Zama, T
    Ohkubo, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3): : 260 - 262
  • [2] Electronic cooling in superconducting tunnel junctions
    Frank, B
    Krech, W
    PHYSICS LETTERS A, 1997, 235 (03) : 281 - 284
  • [3] Electronic cooling in superconducting tunnel junctions
    Frank, B.
    Krech, W.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235 (03): : 281 - 284
  • [4] Parameters of the Tunnel Barrier of Superconducting Niobium-Based Structures
    Paramonov, M. E.
    Filippenko, L. V.
    Dmitriev, P. N.
    Fominsky, M. Yu.
    Ermakov, A. B.
    Koshelets, V. P.
    PHYSICS OF THE SOLID STATE, 2020, 62 (09) : 1534 - 1538
  • [5] Parameters of the Tunnel Barrier of Superconducting Niobium-Based Structures
    M. E. Paramonov
    L. V. Filippenko
    P. N. Dmitriev
    M. Yu. Fominsky
    A. B. Ermakov
    V. P. Koshelets
    Physics of the Solid State, 2020, 62 : 1534 - 1538
  • [6] JOSEPHSON CURRENT AND PROXIMITY EFFECT IN NIOBIUM-BASED TUNNEL-JUNCTIONS
    MORI, N
    INAHATA, H
    OZAKI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1981, 20 (03) : 639 - 646
  • [7] Anomalous temperature and galvanomagnetic effects in a niobium-based superconducting tunnel junction
    Stokes, MK
    Giltrow, M
    Wigmore, JK
    Kozorezov, AG
    Verhoeve, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (02): : 686 - 688
  • [9] High-performance electronic cooling with superconducting tunnel junctions
    Courtois, Herve
    Nguyen, Hung Q.
    Winkelmann, Clemens B.
    Pekola, Jukka P.
    COMPTES RENDUS PHYSIQUE, 2016, 17 (10) : 1139 - 1145
  • [10] Response of niobium-based superconducting tunnel junctions in the soft-x-ray region 0.15-6.5 keV
    Verhoeve, P
    Rando, N
    Verveer, J
    Peacock, A
    vanDordrecht, A
    Videler, P
    Bavdaz, M
    Goldie, DJ
    Lederer, T
    Scholze, F
    Ulm, G
    Venn, R
    PHYSICAL REVIEW B, 1996, 53 (02): : 809 - 817