Influence of Genetic Algorithm Parameters on Their Performance for Parameter Identification of a Yeast Fed-batch Fermentation Process Model

被引:0
作者
Angelova, Maria [1 ]
Pencheva, Tania [1 ]
机构
[1] Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia
关键词
Fed-batch fermentation process model; Multi-population genetic algorithms; Parameter identification; Saccharomyces cerevisiae; Single genetic algorithms;
D O I
10.7546/ijba.2024.28.4.001038
中图分类号
学科分类号
摘要
Eight single (SGA) and eight multi-population (MGA) genetic algorithms (GA) differing in the sequence of implementation of the main genetic operators’ selection, crossover and mutation, or omitting the mutation operator, have been examined for the purposes of parameter identification of a Saccharomyces cerevisiae fed-batch fermentation process model. The influence of some of the main genetic algorithm parameters, namely number of individuals, maximum number of generations, generation gap, crossover and mutation rates for both SGA and MGA, and insertion and migration probability for MGA only, have been investigated in depth. Almost all applied SGA and MGA led to similar values of the optimization criterion but the SGA with operators’ sequence mutation, crossover and selection, and MGA with operators’ sequence crossover, selection and mutation, are significantly faster than others while keeping the model accuracy. Among the considered GA parameters, generation gap influences most significantly to SGA and MGA convergence time, saving of about 40% of computational time of the algorithms without affecting the model accuracy. © 2024 by the authors.
引用
收藏
页码:233 / 244
页数:11
相关论文
共 21 条
[1]  
Anwaar A., Ashraf A., Bangyal W. H. K., Iqbal M., Genetic Algorithms: Brief Review on Genetic Algorithms for Global Optimization Problems, Human-Centered Cognitive Systems (HCCS), pp. 1-6, (2022)
[2]  
Angelova M., Modified Genetic Algorithms and Intuitionistic Fuzzy Logic for Parameter Identification of Fed-batch Fermentation Process Model, (2014)
[3]  
Angelova M., Melo-Pinto P., Pencheva T., Modified Simple Genetic Algorithms Improving Convergence Time for the Purposes of Fermentation Process Parameter Identification, WSEAS Transactions on Systems, 11, 7, pp. 256-267, (2012)
[4]  
Angelova M., Tzonkov S., Pencheva T., Parameter Identification of a Fed-batch Cultivation of S. cerevisiae Using Genetic Algorithms, Serdica Journal of Computing, 4, 1, pp. 11-18, (2010)
[5]  
Angelova M., Tzonkov S., Pencheva T., Modified Multi-population Genetic Algorithm for Yeast Fed-batch Cultivation Parameter Identification, International Journal Bioautomation, 13, 4, pp. 163-172, (2009)
[6]  
Angelova M., Tzonkov S., Pencheva T., Genetic Algorithms Based Parameter Identification of Yeast Fed-batch Cultivation, Lecture Notes in Computer Science, 6046, pp. 224-231, (2011)
[7]  
Angelova M., Pencheva T., Tuning Genetic Algorithm Parameters to Improve Convergence Time, International Journal of Chemical Engineering, (2011)
[8]  
Angelova M., Pencheva T., Algorithms Improving Convergence Time in Parameter Identification of Fed-batch Cultivation, Comptes rendus de l’Académie bulgare des Sciences, 65, 3, pp. 299-306, (2012)
[9]  
Angelova M., Pencheva T., Improvement of Multi-population Genetic Algorithm Convergence Time, Monte Carlo Methods and Applications, pp. 1-9, (2013)
[10]  
Chipperfield A. J., Fleming P., Pohlheim H., Fonseca C. M., Genetic Algorithm Toolbox for Use with MATLAB, User’s Guide v. 1.2, (1994)