MFHG-DDI: An Enhanced Hybrid Graph Method Leveraging Multiple Features for Predicting Drug-Drug Interactions

被引:0
作者
Li, Xiang [1 ]
Ji, Xiangmin [1 ,2 ]
Xu, Chengzhen [3 ]
Hou, Jie [4 ]
Zhao, Xiaoyu [5 ]
Peng, Guodong [1 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Automat & Elect Engn, Baotou 014010, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Key Lab Synthet Automat Proc Ind Univ Inner Mongol, Baotou 014010, Peoples R China
[3] Huaibei Normal Univ, Sch Comp Sci & Technol, Huaibei 235000, Peoples R China
[4] Huzhou Coll, Publ Teaching & Res Dept, Huzhou 313000, Peoples R China
[5] Ordos Inst Technol, Dept Math & Comp Engn, Ordos 017000, Peoples R China
关键词
Drugs; Chemicals; Heterogeneous networks; Enzymes; Deep learning; Vectors; STEM; Predictive models; Metabolism; Graph convolutional networks; Drug-drug interaction; multiple features; heterogeneous network; graph convolutional network; graph attention network; COMBINATION; THERAPY;
D O I
10.1109/ACCESS.2024.3514163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Drug-drug interactions (DDIs) can severely affect patient health and safety. Predicting potential DDIs before administering medication to patients is crucial for drug development as it helps to prevent adverse drug reactions. Many effective DDI prediction methods have been proposed using graph neural networks; however, these methods only aggregate information from directly connected nodes restricted to a drug-related manner and fail to capture long-range dependencies in heterogeneous networks. To address this issue, we propose an enhanced multiple-feature hybrid graph method to predict DDIs (MFHG-DDI). Specifically, we constructed a heterogeneous network incorporating multiple drug features and DDI information. We employed an enhanced hybrid graph module that integrates a graph convolutional network, graph attention network, and global average pooling to learn latent features, ultimately applying a prediction function to predict DDIs. MFHG-DDI reframes the heterogeneous network as a graph classification task, capturing DDI information efficiently through an enhanced hybrid graph. Known DDI datasets were used to train and evaluate the proposed model. The experimental results indicate that integrating multiple drug features into the hybrid graph method can enhance the DDI prediction accuracy, increases the success rate of combination therapy, and has the potential to enhance drug safety.
引用
收藏
页码:188424 / 188434
页数:11
相关论文
共 40 条
[1]   A novel multiple-stage antimalarial agent that inhibits protein synthesis [J].
Baragana, Beatriz ;
Hallyburton, Irene ;
Lee, Marcus C. S. ;
Norcross, Neil R. ;
Grimaldi, Raffaella ;
Otto, Thomas D. ;
Proto, William R. ;
Blagborough, Andrew M. ;
Meister, Stephan ;
Wirjanata, Grennady ;
Ruecker, Andrea ;
Upton, Leanna M. ;
Abraham, Tara S. ;
Almeida, Mariana J. ;
Pradhan, Anupam ;
Porzelle, Achim ;
Santos Martinez, Maria ;
Bolscher, Judith M. ;
Woodland, Andrew ;
Norval, Suzanne ;
Zuccotto, Fabio ;
Thomas, John ;
Simeons, Frederick ;
Stojanovski, Laste ;
Osuna-Cabello, Maria ;
Brock, Paddy M. ;
Churcher, Tom S. ;
Sala, Katarzyna A. ;
Zakutansky, Sara E. ;
Belen Jimenez-Diaz, Maria ;
Maria Sanz, Laura ;
Riley, Jennifer ;
Basak, Rajshekhar ;
Campbell, Michael ;
Avery, Vicky M. ;
Sauerwein, Robert W. ;
Dechering, Koen J. ;
Noviyanti, Rintis ;
Campo, Brice ;
Frearson, Julie A. ;
Angulo-Barturen, Inigo ;
Ferrer-Bazaga, Santiago ;
Javier Gamo, Francisco ;
Wyatt, Paul G. ;
Leroy, Didier ;
Siegl, Peter ;
Delves, Michael J. ;
Kyle, Dennis E. ;
Wittlin, Sergio ;
Marfurt, Jutta .
NATURE, 2015, 522 (7556) :315-+
[2]   Drug interactions in oncology [J].
Beijnen, JH ;
Schellens, JHM .
LANCET ONCOLOGY, 2004, 5 (08) :489-496
[3]   Mibefradil withdrawn from the market [J].
Billups, SJ ;
Carter, BL .
ANNALS OF PHARMACOTHERAPY, 1998, 32 (7-8) :841-841
[4]   Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions [J].
Cami, Aurel ;
Manzi, Shannon ;
Arnold, Alana ;
Reis, Ben Y. .
PLOS ONE, 2013, 8 (04)
[5]   GCN-BMP: Investigating graph representation learning for DDI prediction task [J].
Chen, Xin ;
Liu, Xien ;
Wu, Ji .
METHODS, 2020, 179 :47-54
[6]   Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods [J].
Christopoulou, Fenia ;
Thy Thy Tran ;
Sahu, Sunil Kumar ;
Miwa, Makoto ;
Ananiadou, Sophia .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (01) :39-46
[7]   GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs [J].
Dai, Qiguo ;
Liu, Ziqiang ;
Wang, Zhaowei ;
Duan, Xiaodong ;
Guo, Maozu .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
[8]   A multimodal deep learning framework for predicting drug-drug interaction events [J].
Deng, Yifan ;
Xu, Xinran ;
Qiu, Yang ;
Xia, Jingbo ;
Zhang, Wen ;
Liu, Shichao .
BIOINFORMATICS, 2020, 36 (15) :4316-4322
[9]   Drug repositioning needs a rethink [J].
Ding, Xianting .
NATURE, 2016, 535 (7612) :355-355
[10]   DPDDI: a deep predictor for drug-drug interactions [J].
Feng, Yue-Hua ;
Zhang, Shao-Wu ;
Shi, Jian-Yu .
BMC BIOINFORMATICS, 2020, 21 (01) :419