A Carbon-Aware Framework for Energy-Efficient Data Acquisition and Task Offloading in Sustainable AIoT Ecosystems

被引:0
作者
Song, Zhendong [1 ]
Xie, Menglin [3 ]
Luo, Jinda [4 ]
Gong, Tao [2 ]
Chen, Wei [2 ]
机构
[1] Shenzhen Polytech Univ, Sch Mech & Elect Engn, Shenzhen 518055, Peoples R China
[2] Shenzhen Polytech Univ, Inst Intelligent Mfg Technol, Shenzhen 518055, Peoples R China
[3] Guilin Univ Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China
[4] Yangtze Univ, Sch Mech & Elect Engn, Jingzhou 434023, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 24期
关键词
Internet of Things; Data acquisition; Ecosystems; Energy efficiency; Artificial intelligence; Energy consumption; Resource management; Green computing; Carbon dioxide; Edge computing; Artificial Intelligence of Things (AIoT); carbon-aware framework; energy-efficient data acquisition; task offloading;
D O I
10.1109/JIOT.2024.3472669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The integration of artificial intelligence (AI) and the Internet of Things (IoT) has given rise to AI of Things (AIoT) ecosystems, which, while revolutionizing various domains, face challenges in energy efficiency and environmental sustainability. This article introduces LSCEA-AIoT, a low-carbon sustainable computing framework for energy-efficient acquisition and allocation in AIoT. The framework addresses two critical aspects: 1) energy-efficient heterogeneous data acquisition and 2) low-carbon task offloading optimization. We develop a multisource model for data acquisition that considers acquisition time, load balancing, and energy consumption, coupled with an adaptive sensor node deployment strategy for optimized channel allocation. The task offloading component formulates a joint optimization problem, balancing local and edge computing models to minimize ecosystem costs and carbon emissions. We propose a carbon-aware multichannel exploration offloading decision algorithm based on a Monte Carlo tree search to obtain near-optimal solutions. Extensive experiments compare LSCEA-AIoT with state-of-the-art methods across various metrics. Results demonstrate that LSCEA-AIoT significantly outperforms existing approaches, achieving lower data acquisition errors, reduced energy consumption, extended network lifetimes, and increased data acquisition volumes. LSCEA-AIoT exhibits superior performance in task offloading scenarios in normalized rewards, system costs, and adaptability to diverse network configurations. These findings validate LSCEA-AIoT's effectiveness in achieving low-carbon, sustainable computing for AIoT ecosystems.
引用
收藏
页码:39103 / 39113
页数:11
相关论文
共 36 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Energy-efficient cooperative resource allocation and task scheduling for Internet of Things environments
    Al-Masri, Eyhab
    Souri, Alireza
    Mohamed, Habiba
    Yang, Wenjun
    Olmsted, James
    Kotevska, Olivera
    [J]. INTERNET OF THINGS, 2023, 23
  • [3] Towards green Internet of Things (IoT) for a sustainable future in Gulf Cooperation Council countries: current practices, challenges and future prospective
    Albreem, Mahmoud A.
    Sheikh, Abdul Manan
    Bashir, Mohammed J. K.
    El-Saleh, Ayman A.
    [J]. WIRELESS NETWORKS, 2023, 29 (02) : 539 - 567
  • [4] A collaborative WSN-IoT-Animal for large-scale data collection
    Aziz, Hamayadji Abdoul
    Ari, Ado Adamou Abba
    Njoya, Arouna Ndam
    Djedouboum, Asside Christian
    Mohamadou, Alidou
    Thiare, Ousmane
    [J]. IET SMART CITIES, 2024, 6 (04) : 372 - 386
  • [5] DECO: A Deadline-Aware and Energy-Efficient Algorithm for Task Offloading in Mobile Edge Computing
    Azizi, Sadoon
    Othman, Majeed
    Khamfroush, Hana
    [J]. IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 952 - 963
  • [6] Evolutionary design for sustainability during climate change
    Bejan, A.
    Gunes, U.
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [7] Neuro-Inspired Autonomous Data Acquisition for Energy-Constrained IoT Sensors
    Bunaiyan, Saleh
    Al-Dirini, Feras
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (20) : 19466 - 19479
  • [8] HDS: Heterogeneity-aware dual-interface scheduling for energy-efficient delay-constrained data collection in IoT
    Chen, Hao
    Qin, Hua
    Yang, Gelan
    Peng, Yang
    [J]. AD HOC NETWORKS, 2024, 155
  • [9] Energy-Efficient Offloading for DNN-Based Smart IoT Systems in Cloud-Edge Environments
    Chen, Xing
    Zhang, Jianshan
    Lin, Bing
    Chen, Zheyi
    Wolter, Katinka
    Min, Geyong
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (03) : 683 - 697
  • [10] Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning
    Chen, Ying
    Gu, Wei
    Xu, Jiajie
    Zhang, Yongchao
    Min, Geyong
    [J]. CHINA COMMUNICATIONS, 2023, 20 (11) : 164 - 175