Inverse Design of Multistructured Terahertz Metamaterial Sensors Based on Improved Conditional Generative Network

被引:3
作者
Ge, Hongyi [1 ,2 ,3 ]
Bu, Yuwei [1 ,2 ,3 ]
Ji, Xiaodi [1 ,2 ,3 ]
Jiang, Yuying [1 ,2 ,4 ]
Jia, Keke [1 ,2 ,3 ]
Zhang, Yujie [1 ,2 ,3 ]
Zhang, Yuan [1 ,2 ,3 ]
Wu, Xuyang [1 ,2 ,3 ]
Sun, Qingcheng [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Prov Key Lab Grain Photoelect Detect & Contr, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Henan Univ Technol, Sch Artificial Intelligence & Big Data, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
reverse design; terahertz metamaterial sensors; deep learning;
D O I
10.1021/acsami.4c10921
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The terahertz (THz) metamaterial sensor design is typically complex and requires substantial expertise in physics. To simplify this process, we propose a novel reverse design model based on an improved conditional generative adversarial network that integrates self-attention generative adversarial network and Wasserstein generative adversarial network (WGAN) networks, and is referred to as the self-attention conditional Wasserstein GAN (SACW-GAN) model. By using the target response of the sensor as the input to the generator network, and incorporating labeling information, an attention mechanism, and the Wasserstein distance, we achieve effective reverse design of THz metamaterial sensors. The simulation results demonstrate the model's high performance, with spectral and image accuracies of 95% and 97%, respectively. This deep learning approach offers new perspectives and methodologies for the reverse design and application of THz metamaterial sensors, significantly advancing the field.
引用
收藏
页码:60772 / 60782
页数:11
相关论文
共 36 条
[1]   A high Q terahertz metamaterial absorber using concentric elliptical ring resonators for harmful gas sensing applications [J].
Appasani, Bhargav ;
Srinivasulu, Avireni ;
Ravariu, Cristian .
DEFENCE TECHNOLOGY, 2023, 22 :69-73
[2]   High Performance of Terahertz Sensor Based on Double-Split Hexagonal Ring Metamaterial [J].
Cai, Weijian ;
Zhu, Jianfang ;
Yang, Youpeng ;
Wang, Xiaoran ;
Qian, Zhengfang ;
Fan, Shuting .
IEEE SENSORS JOURNAL, 2023, 23 (19) :22414-22420
[3]   Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon [J].
Chen, Xu ;
Fan, Wenhui .
SCIENTIFIC REPORTS, 2017, 7
[4]   A topology optimization method for design of negative permeability metamaterials [J].
Diaz, Alejandro R. ;
Sigmund, Ole .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (02) :163-177
[5]   Metamaterials with high degrees of freedom: space, time, and more [J].
Engheta, Nader .
NANOPHOTONICS, 2021, 10 (01) :639-642
[6]   Tri-band and high FOM THz metamaterial absorber for food/agricultural safety sensing applications [J].
Ge, Hongyi ;
Ji, Xiaodi ;
Jiang, Yuying ;
Wu, Xuyang ;
Li, Li ;
Jia, Zhiyuan ;
Sun, Zhenyu ;
Bu, Yuwei ;
Guo, Chunyan ;
Zhang, Yuan .
OPTICS COMMUNICATIONS, 2024, 554
[7]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[8]   A Terahertz Metamaterial Sensor Based on Dual Resonant Mode and Enhancement of Sensing Performance [J].
Guo, Shijing ;
Li, Chao ;
Wang, Dong ;
Chen, Wenya ;
Gao, Song ;
Wu, Guozheng ;
Xiong, Jiaran .
PLASMONICS, 2024, 19 (04) :2223-2231
[9]   Terahertz metamaterial biosensor based on open square ring [J].
Guo, Wenjing ;
Zhai, LiHong ;
El-Bahy, Zeinhom M. ;
Lu, Zhumao ;
Li, Lu ;
Elnaggar, Ashraf Y. ;
Ibrahim, Mohamed M. ;
Cao, Huiliang ;
Lin, Jing ;
Wang, Bin .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (03)
[10]   Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning [J].
Ha, Chan Soo ;
Yao, Desheng ;
Xu, Zhenpeng ;
Liu, Chenang ;
Liu, Han ;
Elkins, Daniel ;
Kile, Matthew ;
Deshpande, Vikram ;
Kong, Zhenyu ;
Bauchy, Mathieu ;
Zheng, Xiaoyu .
NATURE COMMUNICATIONS, 2023, 14 (01)