Reinforcement Learning Based Trajectory Planning for Multi-UAV Load Transportation

被引:0
|
作者
Estevez, Julian [1 ]
Manuel Lopez-Guede, Jose [2 ]
del Valle-Echavarri, Javier [2 ]
Grana, Manuel [3 ]
机构
[1] Univ Basque Country UPV EHU, Fac Engn Gipuzkoa, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Fac Engn Vitoria, Grp Computat Intelligence, Vitoria 01006, Spain
[3] Univ Basque Country, Fac Comp Sci, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Aerial robots; payload; reinforcement learning; UAVs; QUADROTOR;
D O I
10.1109/ACCESS.2024.3470509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces a novel trajectory planning approach for the transportation of cable-suspended loads employing three quadrotors, relying on a reinforcement learning (RL) algorithm. The primary objective of this path planning method is to transport the cargo smoothly while avoiding its swing. Within this proposed solution, the value function of the RL is estimated through a feature vector and a parameter vector tailored to the specific problem. The parameter vector undergoes iterative updates via a batch method, subsequently guiding the generation of the desired trajectory through a greedy strategy. Ultimately, this desired trajectory is communicated to the quadrotor controller to ensure precise trajectory tracking. Simulation outcomes demonstrate the capability of the trained parameters to effectively fit the value function.
引用
收藏
页码:144009 / 144016
页数:8
相关论文
共 50 条
  • [21] Game of Drones: Multi-UAV Pursuit-Evasion Game With Online Motion Planning by Deep Reinforcement Learning
    Zhang, Ruilong
    Zong, Qun
    Zhang, Xiuyun
    Dou, Liqian
    Tian, Bailing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7900 - 7909
  • [22] A Multi-agent Reinforcement Learning Framework for Coordinated Multi-UAV Interception Strategies
    Chen, Hong
    Li, Bochen
    Wang, Chenggang
    Ding, Lu
    Song, Lei
    ADVANCES IN GUIDANCE, NAVIGATION AND CONTROL, VOL 1, 2025, 1337 : 527 - 537
  • [23] Maintaining Connectivity for Multi-UAV Multi-Target Search Using Reinforcement Learning
    Guven, Islam
    Yanmaz, Evsen
    PROCEEDINGS OF THE INT'L ACM SYMPOSIUM ON DESIGN AND ANALYSIS OF INTELLIGENT VEHICULAR NETWORKS AND APPLICATIONS, DIVANET 2023, 2023, : 109 - 114
  • [24] RL-Planner: Reinforcement Learning-Enabled Efficient Path Planning in Multi-UAV MEC Systems
    Ejaz, Muhammad
    Gui, Jinsong
    Asim, Muhammad
    El-Affendi, Mohammed A.
    Fung, Carol
    Abd El-Latif, Ahmed A.
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (03): : 3317 - 3329
  • [25] UAV Path Planning Based on Multi-Layer Reinforcement Learning Technique
    Cui, Zhengyang
    Wang, Yong
    IEEE ACCESS, 2021, 9 : 59486 - 59497
  • [26] Reinforcement Learning-Based Collision Avoidance and Optimal Trajectory Planning in UAV Communication Networks
    Hsu, Yu-Hsin
    Gau, Rung-Hung
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (01) : 306 - 320
  • [27] A deep reinforcement learning based distributed multi-UAV dynamic area coverage algorithm for complex environment
    Xiao, Jian
    Yuan, Guohui
    Xue, Yuxi
    He, Jinhui
    Wang, Yaoting
    Zou, Yuanjiang
    Wang, Zhuoran
    NEUROCOMPUTING, 2024, 595
  • [28] Trajectory Planning in UAV-Assisted Wireless Networks via Reinforcement Learning
    He, Simeng
    Zhang, Shangwei
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING (IEEE HPSR), 2022, : 232 - 237
  • [29] REPlanner: Efficient UAV Trajectory-Planning using Economic Reinforcement Learning
    Khalil, Alvi Ataur
    Byrne, Alexander J.
    Rahman, Mohammad Ashiqur
    Manshaei, Mohammad Hossein
    2021 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2021), 2021, : 153 - 160
  • [30] Multi-Agent Deep Reinforcement Learning for Joint Decoupled User Association and Trajectory Design in Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 6056 - 6070