Reinforcement Learning Based Trajectory Planning for Multi-UAV Load Transportation

被引:0
|
作者
Estevez, Julian [1 ]
Manuel Lopez-Guede, Jose [2 ]
del Valle-Echavarri, Javier [2 ]
Grana, Manuel [3 ]
机构
[1] Univ Basque Country UPV EHU, Fac Engn Gipuzkoa, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Fac Engn Vitoria, Grp Computat Intelligence, Vitoria 01006, Spain
[3] Univ Basque Country, Fac Comp Sci, Grp Computat Intelligence, Donostia San Sebastian 20018, Spain
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Aerial robots; payload; reinforcement learning; UAVs; QUADROTOR;
D O I
10.1109/ACCESS.2024.3470509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces a novel trajectory planning approach for the transportation of cable-suspended loads employing three quadrotors, relying on a reinforcement learning (RL) algorithm. The primary objective of this path planning method is to transport the cargo smoothly while avoiding its swing. Within this proposed solution, the value function of the RL is estimated through a feature vector and a parameter vector tailored to the specific problem. The parameter vector undergoes iterative updates via a batch method, subsequently guiding the generation of the desired trajectory through a greedy strategy. Ultimately, this desired trajectory is communicated to the quadrotor controller to ensure precise trajectory tracking. Simulation outcomes demonstrate the capability of the trained parameters to effectively fit the value function.
引用
收藏
页码:144009 / 144016
页数:8
相关论文
共 50 条
  • [1] Trajectory planning of load transportation with multi-quadrotors based on reinforcement learning algorithm
    Li, Xiaoxuan
    Zhang, Jianlei
    Han, Jianda
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 116
  • [2] Deep Reinforcement Learning Multi-UAV Trajectory Control for Target Tracking
    Moon, Jiseon
    Papaioannou, Savvas
    Laoudias, Christos
    Kolios, Panayiotis
    Kim, Sunwoo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (20) : 15441 - 15455
  • [3] Multi-UAV Collaborative Detection Based on Reinforcement Learning
    Hao, Yuanhui
    Guo, Chubing
    Ke, Liangjun
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 463 - 474
  • [4] Multi-UAV Mobile Edge Computing and Path Planning Platform Based on Reinforcement Learning
    Chang, Huan
    Chen, Yicheng
    Zhang, Baochang
    Doermann, David
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (03): : 489 - 498
  • [5] Multi-UAV Adaptive Cooperative Formation Trajectory Planning Based on an Improved MATD3 Algorithm of Deep Reinforcement Learning
    Xing, Xiaojun
    Zhou, Zhiwei
    Li, Yan
    Xiao, Bing
    Xun, Yilin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 12484 - 12499
  • [6] Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches
    Chang, Zheng
    Deng, Hengwei
    You, Li
    Min, Geyong
    Garg, Sahil
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2940 - 2951
  • [7] Multi-UAV Cooperative Target Assignment Method Based on Reinforcement Learning
    Ding, Yunlong
    Kuang, Minchi
    Shi, Heng
    Gao, Jiazhan
    DRONES, 2024, 8 (10)
  • [8] Optimization Design of Multi-UAV Communication Network Based on Reinforcement Learning
    Cao, Zhengyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [9] Reinforcement-Learning-Assisted Multi-UAV Task Allocation and Path Planning for IIoT
    Zhao, Guodong
    Wang, Ye
    Mu, Tong
    Meng, Zhijun
    Wang, Zichen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 26766 - 26777
  • [10] Dynamic Attention Network for Multi-UAV Reinforcement Learning
    Xu, Dongsheng
    Wu, Shang
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156