Sparse Attention Graph Convolution Network for Vehicle Trajectory Prediction

被引:0
作者
Chen, Chongpu [1 ]
Chen, Xinbo [1 ]
Yang, Yi [2 ]
Hang, Peng [3 ,4 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Shanghai Automot Ind Corp, Shanghai 201804, Peoples R China
[3] Tongji Univ, Dept Traff Engn, Shanghai 201804, Peoples R China
[4] State Key Lab Intelligent Transportat Syst, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory; TV; Topology; Mathematical models; Network topology; Attention mechanisms; Vehicle dynamics; Autonomous driving; trajectory prediction; vehicle interaction; sparse attention graph convolution network;
D O I
10.1109/TVT.2024.3443850
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To facilitate intelligent vehicles in making informed decisions and plans, the precise and efficient prediction of vehicle trajectories is imperative. However, the future trajectory of a vehicle is not solely determined by its own historical path; it is also influenced by neighboring vehicles (NVs). Hence, understanding the interactions between vehicles is crucial for trajectory prediction. Additionally, the computational challenges posed by long sequence time-series forecasting (LSTF) add complexity to trajectory prediction tasks. This paper introduces a novel network, named Sparse Attention Graph Convolution Network (SAGCN), designed to comprehensively consider the trajectory interaction details of multiple vehicles, optimizing the LSTF for the target vehicle (TV). Specifically, grounded in real-world driving scenarios and vehicle interaction nuances, a multi-vehicle topology graph is formulated to amalgamate the historical trajectories of the TV and the interaction trajectories of NVs. The SAGCN network employs the Graph Convolutional Network (GCN) to assimilate and analyze diverse features within the multi-vehicle topology graph, subsequently computing the future trajectory of the vehicle through a sparse attention mechanism. The proposed method is validated and evaluated using natural datasets. The results demonstrate that, in comparison to state-of-the-art methods, the SAGCN network presented attains exceptional prediction accuracy and satisfactory time efficiency when predicting the trajectories of TV in LSTF.
引用
收藏
页码:18294 / 18306
页数:13
相关论文
共 50 条
  • [21] Vehicle Trajectory Prediction Method Based on Graph Convolutional Interaction Network
    Wang, Mengxi
    Cai, Yingfeng
    Wang, Hai
    Rao, Zhongyu
    Chen, Long
    Li, Yicheng
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (10):
  • [22] Intelligent Vehicle Moving Trajectory Prediction Based on Residual Attention Network
    Yang, Zhengcai
    Gao, Zhenhai
    Gao, Fei
    Shi, Chuan
    He, Lei
    Gu, Shirui
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (03):
  • [23] Efficient Vehicle Trajectory Prediction With Goal Lane Segments and Dual-Stream Cross Attention
    Li, Linhui
    Wang, Xuecheng
    Lian, Jing
    Zhao, Jian
    Hu, Jun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 21221 - 21234
  • [24] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE ACCESS, 2024, 12 : 144725 - 144737
  • [25] Hybrid Kalman Recurrent Neural Network for Vehicle Trajectory Prediction
    Li, Zhenni
    Sun, Hui
    Xiao, Dong
    Xie, Hongfei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [26] EMSIN: Enhanced Multistream Interaction Network for Vehicle Trajectory Prediction
    Ren, Yilong
    Lan, Zhengxing
    Liu, Lingshan
    Yu, Haiyang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 54 - 68
  • [27] MVHGN: Multi-View Adaptive Hierarchical Spatial Graph Convolution Network Based Trajectory Prediction for Heterogeneous Traffic-Agents
    Xu, Dongwei
    Shang, Xuetian
    Peng, Hang
    Li, Haijian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6217 - 6226
  • [28] Intention-Aware Vehicle Trajectory Prediction Based on Spatial-Temporal Dynamic Attention Network for Internet of Vehicles
    Chen, Xiaobo
    Zhang, Huanjia
    Zhao, Feng
    Hu, Yu
    Tan, Chenkai
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19471 - 19483
  • [29] Attention-based Recurrent Neural Network for Urban Vehicle Trajectory Prediction
    Choi, Seongjin
    Kim, Jiwon
    Yeo, Hwasoo
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 327 - 334
  • [30] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353