Dynamic mode decomposition of GRACE satellite data

被引:2
作者
Libero, G. [1 ]
Ciriello, V. [1 ]
Tartakovsky, D. M. [2 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Bologna, Italy
[2] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA USA
关键词
GRACE data; Dynamic mode decomposition; Reduced-order model; Hydrology; Dynamic process; Time series; SPECTRAL-ANALYSIS;
D O I
10.1016/j.advwatres.2024.104834
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Discriminant Dynamic Mode Decomposition for Labeled Spatiotemporal Data Collections [J].
Takeishi, Naoya ;
Fujii, Keisuke ;
Takeuchi, Koh ;
Kawahara, Yoshinobu .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (02) :1030-1058
[2]   Application of the dynamic mode decomposition to experimental data [J].
Peter J. Schmid .
Experiments in Fluids, 2011, 50 :1123-1130
[3]   Centering Data Improves the Dynamic Mode Decomposition [J].
Hirsh, Seth M. ;
Harris, Kameron Decker ;
Kutz, J. Nathan ;
Brunton, Bingni W. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03) :1920-1955
[4]   PHASE TRANSITIONS IN THE DYNAMIC MODE DECOMPOSITION ALGORITHM [J].
Prasadan, Arvind ;
Lodhia, Asad ;
Nadakuditi, Raj Rao .
2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, :396-400
[5]   Consistent Dynamic Mode Decomposition [J].
Azencot, Omri ;
Yin, Wotao ;
Bertozzi, Andrea .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03) :1565-1585
[6]   Randomized Dynamic Mode Decomposition [J].
Erichson, N. Benjamin ;
Mathelin, Ionel ;
Kutz, J. Nathan ;
Brunton, Steven L. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04) :1867-1891
[7]   Robust Dynamic Mode Decomposition [J].
Abolmasoumi, Amir Hossein ;
Netto, Marcos ;
Mili, Lamine .
IEEE ACCESS, 2022, 10 :65473-65484
[8]   A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states [J].
Li, Cruz Y. ;
Chen, Zengshun ;
Tse, Tim K. T. ;
Weerasuriya, Asiri U. ;
Zhang, Xuelin ;
Fu, Yunfei ;
Lin, Xisheng .
NONLINEAR DYNAMICS, 2022, 107 (04) :3683-3707
[9]   Proper orthogonal and dynamic mode decomposition of sunspot data [J].
Albidah, A. B. ;
Brevis, W. ;
Fedun, V. ;
Ballai, I. ;
Jess, D. B. ;
Stangalini, M. ;
Higham, J. ;
Verth, G. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2190)
[10]   Effects of spatial resolution of the data on dynamic mode decomposition and its quantitative analysis [J].
Lee, Jeonghoon ;
Zimmer, Laurent ;
Saito, Takeshi ;
Nakaya, Shinji ;
Tsue, Mitsuhiro .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 151