Dynamic mode decomposition of GRACE satellite data

被引:0
|
作者
Libero, G. [1 ]
Ciriello, V. [1 ]
Tartakovsky, D. M. [2 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Bologna, Italy
[2] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA USA
关键词
GRACE data; Dynamic mode decomposition; Reduced-order model; Hydrology; Dynamic process; Time series; SPECTRAL-ANALYSIS;
D O I
10.1016/j.advwatres.2024.104834
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Application of the dynamic mode decomposition to experimental data
    Peter J. Schmid
    Experiments in Fluids, 2011, 50 : 1123 - 1130
  • [2] Dynamic mode decomposition of numerical and experimental data
    Schmid, Peter J.
    JOURNAL OF FLUID MECHANICS, 2010, 656 : 5 - 28
  • [3] Centering Data Improves the Dynamic Mode Decomposition
    Hirsh, Seth M.
    Harris, Kameron Decker
    Kutz, J. Nathan
    Brunton, Bingni W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03): : 1920 - 1955
  • [4] Application of the dynamic mode decomposition to experimental data
    Schmid, Peter J.
    EXPERIMENTS IN FLUIDS, 2011, 50 (04) : 1123 - 1130
  • [5] Proper orthogonal and dynamic mode decomposition of sunspot data
    Albidah, A. B.
    Brevis, W.
    Fedun, V.
    Ballai, I.
    Jess, D. B.
    Stangalini, M.
    Higham, J.
    Verth, G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2190):
  • [6] Extended dynamic mode decomposition for cyclic macroeconomic data
    Leventides, John
    Melas, Evangelos
    Poulios, Costas
    DATA SCIENCE IN FINANCE AND ECONOMICS, 2022, 2 (02): : 117 - 146
  • [7] The Challenge of Small Data: Dynamic Mode Decomposition, Redux
    Karimi, Amirhossein
    Georgiou, Tryphon T.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2276 - 2281
  • [8] Dynamic mode decomposition for non-uniformly sampled data
    Romain Leroux
    Laurent Cordier
    Experiments in Fluids, 2016, 57
  • [9] Dynamic mode decomposition for non-uniformly sampled data
    Leroux, Romain
    Cordier, Laurent
    EXPERIMENTS IN FLUIDS, 2016, 57 (05)
  • [10] Dynamic mode decomposition for analysis of time-series data
    Marusic, Ivan
    JOURNAL OF FLUID MECHANICS, 2024, 1000