Fostering sustainable development of energy, water and environment through a smart energy framework

被引:0
作者
Gjorgievski, Vladimir Z. [1 ]
Markovska, Natasa [2 ]
Mathiesen, Brian Vad [3 ]
Duic, Neven [4 ]
机构
[1] Ss Cyril & Methodius Univ Skopje, Fac Elect Engn & Informat Technol, Skopje, North Macedonia
[2] Macedonian Acad Sci & Arts, Res Ctr Energy & Sustainable Dev, Skopje, North Macedonia
[3] Aalborg Univ, Dept Planning, Aalborg, Denmark
[4] Univ Zagreb, Fac Mech Engn & Naval Architecture, Dept Energy Power Engn & Environm, Zagreb, Croatia
来源
SMART ENERGY | 2024年 / 16卷
关键词
Energy-water nexus; District heating and cooling; Smart energy systems; Sustainable finance; SYSTEMS;
D O I
10.1016/j.segy.2024.100167
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As a significant challenge to sustainable development, climate changes require prompt and coordinated action based on a holistic approach for decarbonizing the energy system. In this framework, accounting for the sectoral interdependencies of the energy system, and their interactions with water and environmental systems is essential. The 18th SDEWES Conference in Dubrovnik, held in September 2023, served as a platform that offers experts the opportunity to exchange ideas on state-of-the-art research on the topic. This special issue of Smart Energy highlights peer-reviewed papers from the conference, covering diverse topics such as the energy-water nexus, innovative funding models for district heating, planning of thermal energy storage, and machine learning-based monitoring for HVAC appliances. These contributions highlight the importance of pursuing an integrated analysis of energy systems and provide valuable insights relevant to spearheading the energy transition.
引用
收藏
页数:3
相关论文
共 32 条
[1]   HVAC control in buildings using neural network [J].
Abida, A. ;
Richter, P. .
JOURNAL OF BUILDING ENGINEERING, 2023, 65
[2]  
[Anonymous], https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210428-1
[3]   Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm [J].
Bamdad, Keivan ;
Mohammadzadeh, Navid ;
Cholette, Michael ;
Perera, Srinath .
BUILDINGS, 2023, 13 (12)
[4]   A hybrid machine learning-assisted optimization and rule-based energy monitoring of a green concept based on low-temperature heating and high-temperature cooling system [J].
Behzadi, Amirmohammad ;
Gram, Annika ;
Thorin, Eva ;
Sadrizadeh, Sasan .
JOURNAL OF CLEANER PRODUCTION, 2023, 384
[5]   Quantifying the sensitivity of european power systems to energy scenarios and climate change projections [J].
Bloomfield, H. C. ;
Brayshaw, D. J. ;
Troccoli, A. ;
Goodess, C. M. ;
De Felice, M. ;
Dubus, L. ;
Bett, P. E. ;
Saint-Drenan, Y. -M. .
RENEWABLE ENERGY, 2021, 164 :1062-1075
[6]   On the History and Future of 100% Renewable Energy Systems Research [J].
Breyer, Christian ;
Khalili, Siavash ;
Bogdanov, Dmitrii ;
Ram, Manish ;
Oyewo, Ayobami Solomon ;
Aghahosseini, Arman ;
Gulagi, Ashish ;
Solomon, A. A. ;
Keiner, Dominik ;
Lopez, Gabriel ;
Ostergaard, Poul Alberg ;
Lund, Henrik ;
Mathiesen, Brian, V ;
Jacobson, Mark Z. ;
Victoria, Marta ;
Teske, Sven ;
Pregger, Thomas ;
Fthenakis, Vasilis ;
Raugei, Marco ;
Holttinen, Hannele ;
Bardi, Ugo ;
Hoekstra, Auke ;
Sovacool, Benjamin K. .
IEEE ACCESS, 2022, 10 :78176-78218
[7]   Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system [J].
Brown, T. ;
Schlachtberger, D. ;
Kies, A. ;
Schramm, S. ;
Greiner, M. .
ENERGY, 2018, 160 :720-739
[8]   Solar-assisted district heating networks: Development and experimental validation of a novel simulation tool for the energy optimization [J].
Buonomano, A. ;
Forzano, C. ;
Palombo, A. ;
Russo, G. .
ENERGY CONVERSION AND MANAGEMENT, 2023, 288
[9]   The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition [J].
Dominkovic, D. F. ;
Bacekovic, I. ;
Pedersen, A. S. ;
Krajacic, G. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :1823-1838
[10]   A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation [J].
Elsisi, Mahmoud ;
Amer, Mohammed ;
Dababat, Alya ;
Su, Chun-Lien .
ENERGY, 2023, 281