Enhancement of phenolic compounds bioaccessibility in jabuticaba wine through fermentation by Saccharomyces cerevisiae

被引:2
作者
Borges, Larissa Lorrane Rodrigues [1 ]
Freitas, Valdeir Viana [1 ]
Nascimento, Amanda Lais Alves Almeida [1 ]
Fernandes, Janaina Goncalves [1 ]
Kobi, Helia de Barros [1 ]
Eller, Monique Renon [1 ]
de Barros, Frederico Augusto Ribeiro [1 ]
de Souza, Luciana Angelo [2 ]
Castro, Gabriel Abranches Dias [3 ]
de Carvalho, Arthur Figueira [2 ]
Bezerra, Jaqueline de Araujo [4 ]
Fernandes, Sergio Antonio [3 ]
Bressan, Gustavo Costa [2 ]
Martins, Evandro
Campelo, Pedro Henrique [1 ]
Stringheta, Paulo Cesar [1 ]
机构
[1] Univ Fed Vicosa, Dept Food Technol, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Biochem & Mol Biol, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[3] Univ Fed Vicosa, Dept Chem, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Amazonas, Dept Chem, Ave Sete Setembro 1975, BR-69020120 Manaus, MA, Brazil
关键词
Bioactive compounds; Saccharomyces cerevisiae; Anthocyanins; In vitro digestion; Cytotoxicity; Antioxidant activity; JABOTICABA VELL. BERG; MYRCIARIA JABOTICABA; POLYPHENOL COMPOSITION; CHEMICAL-COMPOSITION; ANTIOXIDANT ACTIVITY; ACID-DERIVATIVES; OXIDATIVE STRESS; ANTHOCYANINS; PEEL; BIOACTIVITY;
D O I
10.1016/j.fbp.2024.09.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Jabuticaba (Plinia cauliflora), a fruit native to Brazil, is known for the high phenolic content in its peel, which is usually discarded. The development of jabuticaba wine is an alternative for better nutritional and technological utilization of the fruit. In this context, the study is the first to investigate the biotransformation of phenolic compounds in jabuticaba during alcoholic fermentation by Saccharomyces cerevisiae and maturation. The research also explored the antioxidant and antiproliferative effects of the beverages, as well as their ability to inhibit alpha-glucosidase and lipase. Fermentation of jabuticaba significantly increased total phenolic compounds (4.91 +/- 0.07-fold), total anthocyanins (5.62 +/- 1.17-fold), cyanidin-3-glucoside (2.05 +/- 0.74-fold), gallic acid (57.02 +/- 3.70-fold), and protocatechuic acid (3.70 +/- 0.51-fold), as well as the bioaccessibility of these compounds. The beverages also showed antiproliferative effects against cancer cells, antioxidant activities, and enzyme inhibition properties. Maturation at 4 +/- 2 degrees C for 30 days reduced the cytotoxicity of the samples. Despite a reduction in phenolic concentration after digestion, the samples retained bioactive potential. These results establish reference data on the chemical composition and bioactive potential of jabuticaba wine.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 50 条
[41]   Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage [J].
Bimpilas, Andreas ;
Tsimogiannis, Dimitrios ;
Balta-Brouma, Kalliopi ;
Lymperopoulou, Theopisti ;
Oreopoulou, Vassiliki .
FOOD CHEMISTRY, 2015, 178 :164-171
[42]   Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review [J].
Wang, Tao ;
He, Fuli ;
Chen, Guibing .
JOURNAL OF FUNCTIONAL FOODS, 2014, 7 :101-111
[43]   Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry (Morus alba L.) leaves after in vitro gastrointestinal digestion and faecal fermentation [J].
Yu, Yanfang ;
Zhang, Bing ;
Xia, Yuhui ;
Li, Hongyan ;
Shi, Xuping ;
Wang, Junwen ;
Deng, Zeyuan .
JOURNAL OF FUNCTIONAL FOODS, 2019, 60
[44]   Mechanisms of Phenolic Compounds Release and Functional Property Enhancement Through Autochthonous Probiotic Fermentation of Qingjinju Puree [J].
Liu, Shuaiguang ;
Ma, Zewei ;
Huang, Huan ;
Li, Jinlian ;
He, Jiale ;
Xu, Yunyang ;
Qin, Xin ;
Zheng, Lianhe ;
Zhang, Hongjian .
JOURNAL OF FOOD BIOCHEMISTRY, 2025, 2025 (01)
[45]   Improvement of phenolic compound bioaccessibility from yerba mate (Ilex paraguariensis) extracts after biosorption on Saccharomyces cerevisiae [J].
Ribeiro, Valeria Rampazzo ;
Maciel, Giselle Maria ;
Fachi, Mariana Millan ;
Pontarolo, Roberto ;
Arruda Fernandes, Isabela de Andrade ;
Stafussa, Ana Paula ;
Isidoro Haminiuk, Charles Windson .
FOOD RESEARCH INTERNATIONAL, 2019, 126
[46]   Inhibitory Activity of Carbonyl Compounds on Alcoholic Fermentation by Saccharomyces cerevisiae [J].
Cao, Dongxu ;
Tu, Maobing ;
Xie, Rui ;
Li, Jing ;
Wu, Yonnie ;
Adhikari, Sushil .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (04) :918-926
[47]   Metabolomic Measurements at Three Time Points of a Chardonnay Wine Fermentation with Saccharomyces cerevisiae [J].
Richter, Chandra L. ;
Kennedy, Adam D. ;
Guo, Lining ;
Dokoozlian, Nick .
AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2015, 66 (03) :294-301
[48]   Dynamic Monitoring of Saccharomyces cerevisiae during the Fermentation of Traditional Shaoxing Rice Wine [J].
Zang W. ;
Xie G. ;
Sun J. ;
Zou H. ;
Shen C. ;
Qian B. ;
Zhou J. ;
Bai F. .
Journal of Chinese Institute of Food Science and Technology, 2017, 17 (12) :201-206
[49]   Effect of Different Saccharomyces cerevisiae on Jun-Jujube Wine Fermentation Characteristics [J].
Zou B. ;
Xu Y. ;
Xiao G. ;
Wu J. ;
Yu Y. ;
Tang D. ;
Wen J. .
Journal of Food Science and Technology (China), 2019, 37 (02) :63-69
[50]   Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains [J].
Carrau, Francisco M. ;
Medina, Karina ;
Farina, Laura ;
Boido, Eduardo ;
Henschke, Paul A. ;
Dellacassa, Eduardo .
FEMS YEAST RESEARCH, 2008, 8 (07) :1196-1207