L4acados: Learning-based models for acados, applied to Gaussian process-based predictive control

被引:0
|
作者
Lahr, Amon [1 ]
Näf, Joshua [1 ]
Wabersich, Kim P. [2 ]
Frey, Jonathan [3 ]
Siehl, Pascal [2 ]
Carron, Andrea [1 ]
Diehl, Moritz [3 ]
Zeilinger, Melanie N. [1 ]
机构
[1] ETH Zürich, Switzerland
[2] Robert Bosch GmbH, Corporate Research, Stuttgart, Germany
[3] Department of Microsystems Engineering (IMTEK), Department of Mathematics, University of Freiburg Freiburg, Germany
来源
关键词
Benchmarking - Gaussian distribution - Gaussian noise (electronic) - Invariance - Modular robots - Open source software - Optimal control systems - Predictive control systems - Problem oriented languages - Robot learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Explicit stochastic predictive control of combustion plants based on Gaussian process models
    Grancharova, Alexandra
    Kocijan, Jus
    Johansen, Tor A.
    AUTOMATICA, 2008, 44 (06) : 1621 - 1631
  • [32] Stability of Gaussian Process Learning Based Output Feedback Model Predictive Control
    Maiworm, Michael
    Limon, Daniel
    Maria Manzano, Jose
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2018, 51 (20): : 455 - 461
  • [33] Disturbance rejection design for Gaussian process-based model predictive control using extended state observer
    Zhang, Fan
    Wang, Li
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 186
  • [34] Gaussian process-based nonlinear predictive control for visual servoing of constrained mobile robots with unknown dynamics
    Jin, Zhehao
    Wu, Jinhui
    Liu, Andong
    Zhang, Wen-An
    Yu, Li
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 136
  • [35] Incremental Sparse Gaussian Process-Based Model Predictive Control for Trajectory Tracking of Unmanned Underwater Vehicles
    Dang, Yukun
    Huang, Yao
    Shen, Xuyu
    Zhu, Daqi
    Chu, Zhenzhong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2327 - 2334
  • [36] LbMATMPC: an open-source toolbox for Gaussian Process modeling within Learning-based Nonlinear Model Predictive Control
    Picotti, Enrico
    Dalla Libera, Alberto
    Carli, Ruggero
    Bruschetta, Mattia
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 736 - 742
  • [37] Gaussian Process-Based Model Predictive Control of Blood Glucose for Patients with Type 1 Diabetes Mellitus
    Ortmann, Lukas
    Shi, Dawei
    Dassau, Eyal
    Doyle, Francis J., III
    Leonhardt, Steffen
    Misgeld, Berno J. E.
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1092 - 1097
  • [38] Learning-based Nonlinear Model Predictive Control
    Limon, D.
    Calliess, J.
    Maciejowski, J. M.
    IFAC PAPERSONLINE, 2017, 50 (01): : 7769 - 7776
  • [39] Learning-based predictive control for MIMO systems
    Salvador, J. R.
    Terzi, E.
    Farina, M.
    Ramirez, D. R.
    Fagiano, L.
    Munoz de la Pena, D.
    Scattolini, R.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7671 - 7676
  • [40] Poster Abstract: Data Efficient HVAC Control using Gaussian Process-based Reinforcement Learning
    An, Zhiyu
    Ding, Xianzhong
    Du, Wan
    PROCEEDINGS OF THE 21ST ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, SENSYS 2023, 2023, : 538 - 539