Operando X-ray spectroscopy study on a high-voltage cathode and polymer-Li-conducting solid electrolyte interface for dendrite-free solid-state lithium metal batteries

被引:3
作者
Sau, Supriya [1 ]
Srivastava, S. K. [2 ,3 ]
Panda, Manas Ranjan [1 ,4 ]
Sagdeo, Archana [2 ,3 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Storage Lab, Mumbai 400076, India
[2] Raja Ramanna Ctr Adv Technol, Accelerator Phys & Synchrotrons Utilizat Div, Indore 452013, India
[3] Homi Bhabha Natl Inst, Mumbai 400094, India
[4] Monash Univ, Dept Mech & Aerosp Engn, Nanoscale Sci & Engn Lab NSEL, Clayton, Vic 3800, Australia
关键词
Stifle CEI/Ion-conducting AEI; In-situ SXANES/SXRD; Dendrite free; Solid-state lithium metal battery; Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused polymer matrix; IN-SITU XRD; ELECTROCHEMICAL PROPERTIES; ION; PERFORMANCE; INSIGHTS; NICKEL; DISSOLUTION; DIFFRACTION; MANGANESE; CAPACITY;
D O I
10.1016/j.jpowsour.2024.235578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel-rich lithium nickel manganese cobalt oxide (LiNi0.6Mn0.2C0.2O2, NMC 622) cathodes commonly encounter capacity loss in lithium metal batteries at high voltages (>4.2 V) due to excessive parasitic reactions and structural degradation in carbonate-based liquid electrolytes (LEs). Substituting LEs with solid polymer electrolytes faces challenges such as low lithium-ion transference number (t(Li)(+)), ionic conductivity (sigma(ion)), and mechanical strength (MS) at room temperature. Addressing these limitations, a nano Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused conductive network-based hybrid solid polymer electrolyte (IRHSPE-50) is developed, exhibiting exceptional t(Li)(+) of 0.75, sigma(ion) of 1.42 mS cm(-1) and MS of 13.3 Mpa at room temperature (30 degrees C). The enhanced performance is attributed to optimal LAGPS content, facilitating fast Li+ movement through a conductive network. Utilizing IRHSPE-50, solid-state lithium metal batteries (SSLMBs) with NMC 622 cathodes achieve a capacity of 179.44 mAh g(-1) at 0.2C under 30 degrees C with 79.9 % capacity retention over 250 cycles. In-situ synchrotron X-ray near-edge absorption spectroscopy (SXANES) and X-ray diffraction (SXRD) studies reveal cobalt irreversibility during delithiation, maintaining structural integrity with minimal volume change (2 %) and no additional phase formation during cycling. The IRHSPE-50 membrane establishes a stable interface with the NMC 622 cathode, creating a thin and uniform cathode-electrolyte interphase layer that effectively suppresses interfacial reactions. The formation of an ion-conducting lithium fluoride layer and an outer organic layer on the Li surface enables uniform and dendrite-free Li+ transport with a critical current density of 2 mA cm(-2), preventing active Li loss and mitigating NMC 622/IRHSPE-50 degradation. Facile development and a fundamental understanding of IRHSPE-50, interface chemistry, and degradation mechanisms are poised to accelerate the advancement of high-performance SSLMBs.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Anion-mediated interphase construction enabling high-voltage solid-state lithium metal batteries [J].
Zheng, Guorui ;
Xue, Shida ;
Li, Yuhang ;
Chen, Shiming ;
Qiu, Jimin ;
Ji, Yuchen ;
Liu, Ming ;
Yang, Luyi .
NANO ENERGY, 2024, 125
[42]   Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries [J].
Guo, Qingpeng ;
Zheng, Jiayi ;
Zhu, Yuhao ;
Jiang, Haolong ;
Jiang, Huize ;
Wang, Hui ;
Sun, Weiwei ;
Sang, Hongqian ;
Han, Yu ;
Zheng, Chunman ;
Xie, Kai .
ENERGY STORAGE MATERIALS, 2022, 48 :205-211
[43]   Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries [J].
Luo, Dan ;
Zheng, Lei ;
Zhang, Zhen ;
Li, Matthew ;
Chen, Zhongwei ;
Cui, Ruiguang ;
Shen, Yanbin ;
Li, Gaoran ;
Feng, Renfei ;
Zhang, Shaojian ;
Jiang, Gaopeng ;
Chen, Liwei ;
Yu, Aiping ;
Wang, Xin .
NATURE COMMUNICATIONS, 2021, 12 (01)
[44]   Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery [J].
Wang, Chen ;
Wang, Tao ;
Wang, Longlong ;
Hu, Zhenglin ;
Cui, Zili ;
Li, Jiedong ;
Dong, Shanmu ;
Zhou, Xinhong ;
Cui, Guanglei .
ADVANCED SCIENCE, 2019, 6 (22)
[45]   Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries [J].
Mi, Jinshuo ;
Ma, Jiabin ;
Chen, Likun ;
Lai, Chen ;
Yang, Ke ;
Biao, Jie ;
Xia, Heyi ;
Song, Xin ;
Lv, Wei ;
Zhong, Guiming ;
He, Yan-Bing .
ENERGY STORAGE MATERIALS, 2022, 48 :375-383
[46]   Composite polymer electrolytes with ionic liquid grafted-Laponite for dendrite-free all-solid-state lithium metal batteries [J].
Jin, Biyu ;
Wang, Dongyun ;
He, Yuan ;
Mao, Jianjiang ;
Kang, Yunqing ;
Wan, Chao ;
Xia, Wei ;
Kim, Jeonghun ;
Eguchi, Miharu ;
Yamauchi, Yusuke .
CHEMICAL SCIENCE, 2023, 14 (29) :7956-7965
[47]   A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries [J].
Wu, Erik A. ;
Banerjee, Swastika ;
Tang, Hanmei ;
Richardson, Peter M. ;
Doux, Jean-Marie ;
Qi, Ji ;
Zhu, Zhuoying ;
Grenier, Antonin ;
Li, Yixuan ;
Zhao, Enyue ;
Deysher, Grayson ;
Sebti, Elias ;
Nguyen, Han ;
Stephens, Ryan ;
Verbist, Guy ;
Chapman, Karena W. ;
Clement, Raphaele J. ;
Banerjee, Abhik ;
Meng, Ying Shirley ;
Ong, Shyue Ping .
NATURE COMMUNICATIONS, 2021, 12 (01)
[48]   Regulating interfacial reactions via quasi-solid polymer electrolyte to enable high-voltage lithium metal batteries [J].
Fu, Jialong ;
Zhou, Xiaoyan ;
Li, Zhiyong ;
Chen, Jianxiong ;
Guo, Xin .
CHEMICAL ENGINEERING JOURNAL, 2024, 500
[49]   Tailoring the surface energy and area surface resistance of solid-electrolyte polymer membrane for dendrite free, high-performance, and safe solid-state Li-batteries [J].
Dubey, Brahma Prakash ;
Sahoo, Asit ;
Sharma, Yogesh .
JOURNAL OF POWER SOURCES, 2022, 541
[50]   In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries [J].
Lu, Yunpei ;
Zhang, Xinyi ;
Wu, Yong ;
Cheng, Hao ;
Lu, Yingying .
INDUSTRIAL CHEMISTRY & MATERIALS, 2025, 3 (02) :151-177