Operando X-ray spectroscopy study on a high-voltage cathode and polymer-Li-conducting solid electrolyte interface for dendrite-free solid-state lithium metal batteries

被引:3
作者
Sau, Supriya [1 ]
Srivastava, S. K. [2 ,3 ]
Panda, Manas Ranjan [1 ,4 ]
Sagdeo, Archana [2 ,3 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Storage Lab, Mumbai 400076, India
[2] Raja Ramanna Ctr Adv Technol, Accelerator Phys & Synchrotrons Utilizat Div, Indore 452013, India
[3] Homi Bhabha Natl Inst, Mumbai 400094, India
[4] Monash Univ, Dept Mech & Aerosp Engn, Nanoscale Sci & Engn Lab NSEL, Clayton, Vic 3800, Australia
关键词
Stifle CEI/Ion-conducting AEI; In-situ SXANES/SXRD; Dendrite free; Solid-state lithium metal battery; Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused polymer matrix; IN-SITU XRD; ELECTROCHEMICAL PROPERTIES; ION; PERFORMANCE; INSIGHTS; NICKEL; DISSOLUTION; DIFFRACTION; MANGANESE; CAPACITY;
D O I
10.1016/j.jpowsour.2024.235578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel-rich lithium nickel manganese cobalt oxide (LiNi0.6Mn0.2C0.2O2, NMC 622) cathodes commonly encounter capacity loss in lithium metal batteries at high voltages (>4.2 V) due to excessive parasitic reactions and structural degradation in carbonate-based liquid electrolytes (LEs). Substituting LEs with solid polymer electrolytes faces challenges such as low lithium-ion transference number (t(Li)(+)), ionic conductivity (sigma(ion)), and mechanical strength (MS) at room temperature. Addressing these limitations, a nano Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused conductive network-based hybrid solid polymer electrolyte (IRHSPE-50) is developed, exhibiting exceptional t(Li)(+) of 0.75, sigma(ion) of 1.42 mS cm(-1) and MS of 13.3 Mpa at room temperature (30 degrees C). The enhanced performance is attributed to optimal LAGPS content, facilitating fast Li+ movement through a conductive network. Utilizing IRHSPE-50, solid-state lithium metal batteries (SSLMBs) with NMC 622 cathodes achieve a capacity of 179.44 mAh g(-1) at 0.2C under 30 degrees C with 79.9 % capacity retention over 250 cycles. In-situ synchrotron X-ray near-edge absorption spectroscopy (SXANES) and X-ray diffraction (SXRD) studies reveal cobalt irreversibility during delithiation, maintaining structural integrity with minimal volume change (2 %) and no additional phase formation during cycling. The IRHSPE-50 membrane establishes a stable interface with the NMC 622 cathode, creating a thin and uniform cathode-electrolyte interphase layer that effectively suppresses interfacial reactions. The formation of an ion-conducting lithium fluoride layer and an outer organic layer on the Li surface enables uniform and dendrite-free Li+ transport with a critical current density of 2 mA cm(-2), preventing active Li loss and mitigating NMC 622/IRHSPE-50 degradation. Facile development and a fundamental understanding of IRHSPE-50, interface chemistry, and degradation mechanisms are poised to accelerate the advancement of high-performance SSLMBs.
引用
收藏
页数:17
相关论文
共 50 条
[21]   An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries [J].
Wei, Ying ;
Xu, Henghui ;
Cheng, Hang ;
Guan, Weixin ;
Yang, Jiayi ;
Li, Zhen ;
Huang, Yunhui .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[22]   Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries [J].
Yang, Wujie ;
Liu, Yiwen ;
Sun, Xinyi ;
He, Zhiying ;
He, Ping ;
Zhou, Haoshen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)
[23]   Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries [J].
Luo, Guangmei ;
Yuan, Bing ;
Guan, Tianyun ;
Cheng, Fangyi ;
Zhang, Wangqing ;
Chen, Jun .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) :3028-3034
[24]   Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode [J].
Zhao, Chen-Zi ;
Zhao, Qing ;
Liu, Xiaotun ;
Zheng, Jingxu ;
Stalin, Sanjuna ;
Zhang, Qiang ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2020, 32 (12)
[25]   Unveiling and Alleviating Chemical "Crosstalk" of Succinonitrile Molecules in Hierarchical Electrolyte for High-Voltage Solid-State Lithium Metal Batteries [J].
Fu, Fang ;
Liu, Ying ;
Sun, Chen ;
Cong, Lina ;
Liu, Yulong ;
Sun, Liqun ;
Xie, Haiming .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
[26]   High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature [J].
Yin, Junying ;
Xu, Xin ;
Jiang, Sen ;
Wu, Haihua ;
Wei, Lai ;
Li, Yudan ;
He, Jinpeng ;
Xi, Kang ;
Gao, Yunfang .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[27]   Lithium difluorophosphate-modified PEO-based solid-state electrolyte for high-voltage lithium batteries [J].
Tan, Jiaxu ;
Li, Xinhai ;
Li, Qihou ;
Wang, Zhixing ;
Guo, Huajun ;
Yan, Guochun ;
Wang, Jiexi ;
Li, Guangchao .
IONICS, 2022, 28 (07) :3233-3241
[28]   Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries [J].
Yang, Yun ;
Wu, Qian ;
Wang, Dong ;
Ma, Chenchong ;
Chen, Zheng ;
Su, Qinting ;
Zhu, Caizhen ;
Li, Cuihua .
JOURNAL OF MEMBRANE SCIENCE, 2020, 612
[29]   A Stable Fluorine-Containing Solid Electrolyte Interface toward Dendrite-Free Lithium-Metal Anode for Lithium-Sulfur Batteries [J].
Chen, Yuchao ;
Mao, Yangyang ;
Hao, Xiaoqian ;
Cao, Yongan ;
Wang, Wenju .
CHEMELECTROCHEM, 2021, 8 (08) :1500-1506
[30]   Directing (110) Oriented Lithium Deposition through High-flux Solid Electrolyte Interphase for Dendrite-free Lithium Metal Batteries [J].
Sun, Zehui ;
Wang, Yuankun ;
Shen, Shenyu ;
Li, Xinyang ;
Hu, Xiaofei ;
Hu, Mingyou ;
Su, Yaqiong ;
Ding, Shujiang ;
Xiao, Chunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (41)