Operando X-ray spectroscopy study on a high-voltage cathode and polymer-Li-conducting solid electrolyte interface for dendrite-free solid-state lithium metal batteries

被引:2
|
作者
Sau, Supriya [1 ]
Srivastava, S. K. [2 ,3 ]
Panda, Manas Ranjan [1 ,4 ]
Sagdeo, Archana [2 ,3 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Storage Lab, Mumbai 400076, India
[2] Raja Ramanna Ctr Adv Technol, Accelerator Phys & Synchrotrons Utilizat Div, Indore 452013, India
[3] Homi Bhabha Natl Inst, Mumbai 400094, India
[4] Monash Univ, Dept Mech & Aerosp Engn, Nanoscale Sci & Engn Lab NSEL, Clayton, Vic 3800, Australia
关键词
Stifle CEI/Ion-conducting AEI; In-situ SXANES/SXRD; Dendrite free; Solid-state lithium metal battery; Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused polymer matrix; IN-SITU XRD; ELECTROCHEMICAL PROPERTIES; ION; PERFORMANCE; INSIGHTS; NICKEL; DISSOLUTION; DIFFRACTION; MANGANESE; CAPACITY;
D O I
10.1016/j.jpowsour.2024.235578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel-rich lithium nickel manganese cobalt oxide (LiNi0.6Mn0.2C0.2O2, NMC 622) cathodes commonly encounter capacity loss in lithium metal batteries at high voltages (>4.2 V) due to excessive parasitic reactions and structural degradation in carbonate-based liquid electrolytes (LEs). Substituting LEs with solid polymer electrolytes faces challenges such as low lithium-ion transference number (t(Li)(+)), ionic conductivity (sigma(ion)), and mechanical strength (MS) at room temperature. Addressing these limitations, a nano Li1.6Al0.5Ge1.5P2.9Si0.1O12-rich fused conductive network-based hybrid solid polymer electrolyte (IRHSPE-50) is developed, exhibiting exceptional t(Li)(+) of 0.75, sigma(ion) of 1.42 mS cm(-1) and MS of 13.3 Mpa at room temperature (30 degrees C). The enhanced performance is attributed to optimal LAGPS content, facilitating fast Li+ movement through a conductive network. Utilizing IRHSPE-50, solid-state lithium metal batteries (SSLMBs) with NMC 622 cathodes achieve a capacity of 179.44 mAh g(-1) at 0.2C under 30 degrees C with 79.9 % capacity retention over 250 cycles. In-situ synchrotron X-ray near-edge absorption spectroscopy (SXANES) and X-ray diffraction (SXRD) studies reveal cobalt irreversibility during delithiation, maintaining structural integrity with minimal volume change (2 %) and no additional phase formation during cycling. The IRHSPE-50 membrane establishes a stable interface with the NMC 622 cathode, creating a thin and uniform cathode-electrolyte interphase layer that effectively suppresses interfacial reactions. The formation of an ion-conducting lithium fluoride layer and an outer organic layer on the Li surface enables uniform and dendrite-free Li+ transport with a critical current density of 2 mA cm(-2), preventing active Li loss and mitigating NMC 622/IRHSPE-50 degradation. Facile development and a fundamental understanding of IRHSPE-50, interface chemistry, and degradation mechanisms are poised to accelerate the advancement of high-performance SSLMBs.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries
    Lv, Qiang
    Jing, Yutong
    Wang, Bo
    Wu, Bochen
    Wang, Shangjie
    Li, Cheng
    Wang, Lei
    Xiao, Lihui
    Wang, Dianlong
    Liu, Huakun
    Dou, Shixue
    ENERGY STORAGE MATERIALS, 2024, 65
  • [2] An Intelligent "Solid-Liquid" Hybrid Electrolyte for High-Voltage and Dendrite-Free Lithium Metal Batteries
    Wu, Yingkang
    Bai, Yuzhou
    Dong, Wujie
    Cai, Mingzhi
    Wang, Xue
    Huang, Fuqiang
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (09): : 4101 - 4110
  • [3] Patterning and a Composite Protective Layer Provide Modified Li Metal Anodes for Dendrite-Free High-Voltage Solid-State Lithium Batteries
    Karuppiah, Chelladurai
    Beshahwured, Shimelis Lemma
    Wu, Yi-Shiuan
    Babulal, Lakshmipriya Musuvadhi
    Walle, Kumlachew Zelalem
    Tran, Hoai Khang
    Wu, She-Huang
    Jose, Rajan
    Yang, Chun-Chen
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 11248 - 11257
  • [4] In Situ Construction of Elastic Solid-State Polymer Electrolyte with Fast Ionic Transport for Dendrite-Free Solid-State Lithium Metal Batteries
    Wang, Jin
    Liao, Yunlong
    Wu, Xi
    Ye, Lingfeng
    Wang, Zixi
    Wu, Fugen
    Lin, Zhiping
    NANOMATERIALS, 2024, 14 (05)
  • [5] Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries
    Huo, Hanyu
    Liang, Jianneng
    Zhao, Ning
    Li, Xiaona
    Lin, Xiaoting
    Zhao, Yang
    Adair, Keegan
    Li, Ruying
    Guo, Xiangxin
    Sun, Xueliang
    ACS ENERGY LETTERS, 2020, 5 (07) : 2156 - 2164
  • [6] Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries
    Chen, Long
    Li, Wenxin
    Fan, Li-Zhen
    Nan, Ce-Wen
    Zhang, Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
  • [7] Unveiling the Li/Electrolyte Interface Behavior for Dendrite-Free All-Solid-State Lithium Metal Batteries by Operando Nano-Focus WAXS
    Liang, Yuxin
    Apfelbeck, Fabian A. C.
    Sun, Kun
    Yan, Yingying
    Cheng, Lyuyang
    Pan, Guangjiu
    Zheng, Tianle
    Cheng, Yajun
    Davydok, Anton
    Krywka, Christina
    Mueller-Buschbaum, Peter
    ADVANCED SCIENCE, 2025,
  • [8] Dendrite-Free Solid-State Li Metal Batteries Enabled by Bifunctional Polymer Gel Electrolytes
    Wu, Qian
    Yang, Yun
    Chen, Zheng
    Su, Qinting
    Huang, Songde
    Song, Dakun
    Zhu, Caizhen
    Ma, Rui
    Li, Cuihua
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9420 - 9430
  • [9] A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries
    Cao, Chen
    Li, Yu
    Feng, Yiyu
    Peng, Cong
    Li, Zeyu
    Feng, Wei
    ENERGY STORAGE MATERIALS, 2019, 19 : 401 - 407
  • [10] Stabilized Solid Electrolyte Interface Layer and Regulate the Li+ Flux for Dendrite-Free Lithium Metal Batteries
    Yang, Ling
    Gao, Xingxu
    Sun, Ao
    Chen, Qian
    Niu, Jing
    Bai, Yaozong
    Liu, Gaojun
    Dong, Haoyu
    Sheng, Lei
    Wang, Tao
    Huang, Xianli
    He, Jianping
    SMALL, 2025,