Turbulent Energy Conversion Associated With Kinetic Microinstabilities in Earth's Magnetosheath

被引:2
作者
Lewis, Harry C. [1 ]
Stawarz, Julia E. [2 ]
Matteini, Lorenzo [1 ]
Franci, Luca [2 ]
Klein, Kristopher G. [3 ,4 ]
Wicks, Robert T. [2 ]
Salem, Chadi S. [5 ]
Horbury, Timothy S. [1 ]
Wang, Joseph H. [1 ]
机构
[1] Imperial Coll London, Dept Phys, London, England
[2] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne, England
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ USA
[4] Univ Arizona, Dept Planetary Sci, Tucson, AZ USA
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA
基金
英国科学技术设施理事会;
关键词
space plasma physics; magnetosheath; turbulence; heliosphere; plasma instabilities; kinetic microinstabilities; ELECTRON FIREHOSE INSTABILITY; MAGNETIC RECONNECTION; ANISOTROPY; HELIOSPHERE; WHISTLER; SPECTRA; FIELD;
D O I
10.1029/2024GL112038
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Plasma in Earth's magnetosheath rarely experiences interparticle collisions, so kinetic microinstabilities are thought to contribute to regulating the plasma thermodynamics. Instabilities excite waves and redistribute free energy in velocity space, reducing free energy in the velocity distribution function (VDF). Using 24 hr of data spread over 163 intervals of in situ magnetosheath observations by Magnetospheric Multiscale (MMS), we investigate signatures of energy conversion where the turbulent dynamics have locally distorted the VDFs into non-Maxwellian shapes, in the context of electron and ion temperature anisotropy driven instabilities. We find enhanced average energy conversion into the particles along instability boundaries, suggesting turbulence plays a role in redistributing free energy. In so doing, we quantify the energetics associated with unstable conditions for both species. This work provides insight into the open question of how specific plasma processes couple into the turbulent dynamics, ultimately leading to energy dissipation and particle energization in collisionless plasmas.
引用
收藏
页数:12
相关论文
共 109 条
[1]   The Transport and Evolution of MHD Turbulence throughout the Heliosphere: Models and Observations [J].
Adhikari, Laxman ;
Zank, Gary P. ;
Zhao, Lingling .
FLUIDS, 2021, 6 (10)
[2]   The Importance of Electron Landau Damping for the Dissipation of Turbulent Energy in Terrestrial Magnetosheath Plasma [J].
Afshari, A. S. ;
Howes, G. G. ;
Kletzing, C. A. ;
Hartley, D. P. ;
Boardsen, S. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (12)
[3]   Solar Wind Turbulence and the Role of Ion Instabilities [J].
Alexandrova, O. ;
Chen, C. H. K. ;
Sorriso-Valvo, L. ;
Horbury, T. S. ;
Bale, S. D. .
SPACE SCIENCE REVIEWS, 2013, 178 (2-4) :101-139
[4]   Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations [J].
Alexandrova, O. ;
Lacombe, C. ;
Mangeney, A. .
ANNALES GEOPHYSICAE, 2008, 26 (11) :3585-3596
[5]   Theory, observations, and simulations of kinetic entropy in a magnetotail electron diffusion region [J].
Argall, M. R. ;
Barbhuiya, M. H. ;
Cassak, P. A. ;
Wang, S. ;
Shuster, J. ;
Liang, H. ;
Gershman, D. J. ;
Torbert, R. B. ;
Burch, J. L. .
PHYSICS OF PLASMAS, 2022, 29 (02)
[6]   Beta-Dependent Constraints on Ion Temperature Anisotropy in Jupiter's Magnetosheath [J].
Bandyopadhyay, R. ;
Begley, L. J. ;
Maruca, B. A. ;
McComas, D. J. ;
Szalay, J. R. ;
Allegrini, F. ;
Ebert, R. W. ;
Gershman, D. J. ;
Connerney, J. E. P. ;
Bolton, S. J. .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (15)
[7]   Energy dissipation in turbulent reconnection [J].
Bandyopadhyay, R. ;
Chasapis, A. ;
Matthaeus, W. H. ;
Parashar, T. N. ;
Haggerty, C. C. ;
Shay, M. A. ;
Gershman, D. J. ;
Giles, B. L. ;
Burch, J. L. .
PHYSICS OF PLASMAS, 2021, 28 (11)
[8]   Interplay of turbulence and proton-microinstability growth in space plasmas [J].
Bandyopadhyay, Riddhi ;
Qudsi, Ramiz A. ;
Gary, S. Peter ;
Matthaeus, William H. ;
Parashar, Tulasi N. ;
Maruca, Bennett A. ;
Roytershteyn, Vadim ;
Chasapis, Alexandros ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Pollock, Craig J. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Moore, Thomas E. ;
Burch, James L. .
PHYSICS OF PLASMAS, 2022, 29 (10)
[9]   Higher-order nonequilibrium term: Effective power density quantifying evolution towards or away from local thermodynamic equilibrium [J].
Barbhuiya, M. Hasan ;
Cassak, Paul A. ;
Adhikari, Subash ;
Parashar, Tulasi N. ;
Liang, Haoming ;
Argall, Matthew R. .
PHYSICAL REVIEW E, 2024, 109 (01)
[10]  
Baumjohann W., 1996, Basic Space Plasma Physics, DOI DOI 10.1142/P015