MicEMD: Open-source toolbox for electromagnetic modeling, inversion, and classification in underground metal target detection

被引:0
作者
Wang, Xiaofen [1 ]
Shi, Haodong [1 ]
Zhang, Xiaotong [1 ]
Wan, Yadong [1 ]
Wang, Peng [2 ]
机构
[1] Univ Sci & Technol, Sch Comp & Commun Engn, Beijing, Peoples R China
[2] China Unicorn Smart City Res Inst, Beijing, Peoples R China
关键词
Open-source; Underground metal target detection; Inversion; Classification; Electromagnetic induction (EMI); Extensibility; DIMENSIONALITY REDUCTION; IDENTIFICATION;
D O I
10.1016/j.softx.2024.101812
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The development and improvement of electromagnetic underground metal target detection methods can be implemented by a framework that is experimental supporting, modular, and extensible. In this paper, we organize the components of electromagnetic underground metal target detection in a comprehensive, modular, and extensible framework. Furthermore, we present an open-source toolbox in Python called MicEMD (Modeling, Inversion, and Classification in ElectroMagnetic Detection, https://github.com/UndergroundDetection/ MICEMD). The graphical user interface (GUI) and the library with a Python application programming interface (API) are contained in MicEMD. Included in MicEMD are staggered frequency-domain and time-domain electromagnetic forward modeling, least-squares inversion, and data-based classification methods at present. MicEMD's capabilities are presented by two synthetic case studies. The first example shows the application of frequency-domain inversion. The second example shows the application of time-domain classification. It is anticipated that MicEMD offers a flexible tool in electromagnetic underground metal target detection.
引用
收藏
页数:8
相关论文
共 42 条
[11]  
Feller J., 2000, P 21 INT C INFORM SY, P58
[12]   A Man-Portable Vector Sensor for Identification of Unexploded Ordnance [J].
Fernandez, Juan Pablo ;
Barrowes, Benjamin E. ;
Grzegorczyk, Tomasz M. ;
Lhomme, Nicolas ;
O'Neill, Kevin ;
Shubitidze, Fridon .
IEEE SENSORS JOURNAL, 2011, 11 (10) :2542-2555
[13]   MPV-II: an enhanced vector man-portable EMI sensor for UXO identification [J].
Fernandez, Juan Pablo ;
Barrowes, Benjamin ;
Bijamov, Alex ;
Grzegorczyk, Tomasz ;
Lhomme, Nicolas ;
O'Neill, Kevin ;
Shamatava, Irma ;
Shubitidze, Fridon .
DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVI, 2011, 8017
[14]   A framework for simulation and inversion in electromagnetics [J].
Heagy, Lindsey J. ;
Cockett, Rowan ;
Kang, Seogi ;
Rosenkjaer, Gudni K. ;
Oldenburg, Douglas W. .
COMPUTERS & GEOSCIENCES, 2017, 107 :1-19
[15]   A Hybrid Method for UXO vs. Non-UXO Discrimination [J].
Kappler, Karl N. ;
Gasperikova, Erika .
JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2011, 16 (04) :177-189
[16]   ModEM: A modular system for inversion of electromagnetic geophysical data [J].
Kelbert, Anna ;
Meqbel, Naser ;
Egbert, Gary D. ;
Tandon, Kush .
COMPUTERS & GEOSCIENCES, 2014, 66 :40-53
[17]   A new algorithm for redundancy minimisation in geo-environmental data [J].
Laib, Mohamed ;
Kanevski, Mikhail .
COMPUTERS & GEOSCIENCES, 2019, 133
[18]   Locating Underground Pipe Using Wideband Chaotic Ground Penetrating Radar [J].
Li, Jingxia ;
Guo, Tian ;
Leung, Henry ;
Xu, Hang ;
Liu, Li ;
Wang, Bingjie ;
Liu, Yang .
SENSORS, 2019, 19 (13)
[19]   2D marine controlled-source electromagnetic modeling: Part 1 - An adaptive finite-element algorithm [J].
Li, Yuguo ;
Key, Kerry .
GEOPHYSICS, 2007, 72 (02) :WA51-WA62
[20]   Three-dimensional object location and inversion of the magnetic polarizability tensor at a single frequency using a walk-through metal detector [J].
Marsh, Liam A. ;
Ktistis, Christos ;
Jarvi, Ari ;
Armitage, David W. ;
Peyton, Anthony J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (04)