MicEMD: Open-source toolbox for electromagnetic modeling, inversion, and classification in underground metal target detection

被引:0
作者
Wang, Xiaofen [1 ]
Shi, Haodong [1 ]
Zhang, Xiaotong [1 ]
Wan, Yadong [1 ]
Wang, Peng [2 ]
机构
[1] Univ Sci & Technol, Sch Comp & Commun Engn, Beijing, Peoples R China
[2] China Unicorn Smart City Res Inst, Beijing, Peoples R China
关键词
Open-source; Underground metal target detection; Inversion; Classification; Electromagnetic induction (EMI); Extensibility; DIMENSIONALITY REDUCTION; IDENTIFICATION;
D O I
10.1016/j.softx.2024.101812
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The development and improvement of electromagnetic underground metal target detection methods can be implemented by a framework that is experimental supporting, modular, and extensible. In this paper, we organize the components of electromagnetic underground metal target detection in a comprehensive, modular, and extensible framework. Furthermore, we present an open-source toolbox in Python called MicEMD (Modeling, Inversion, and Classification in ElectroMagnetic Detection, https://github.com/UndergroundDetection/ MICEMD). The graphical user interface (GUI) and the library with a Python application programming interface (API) are contained in MicEMD. Included in MicEMD are staggered frequency-domain and time-domain electromagnetic forward modeling, least-squares inversion, and data-based classification methods at present. MicEMD's capabilities are presented by two synthetic case studies. The first example shows the application of frequency-domain inversion. The second example shows the application of time-domain classification. It is anticipated that MicEMD offers a flexible tool in electromagnetic underground metal target detection.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] Improved TLBO-JAYA Algorithm for Subset Feature Selection and Parameter Optimisation in Intrusion Detection System
    Aljanabi, Mohammad
    Ismail, Mohd Arfian
    Mezhuyev, Vitaly
    [J]. COMPLEXITY, 2020, 2020
  • [2] Alrumaih TM, 2018, ICCAIS, P1
  • [3] An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data
    Auken, Esben
    Christiansen, Anders Vest
    Kirkegaard, Casper
    Fiandaca, Gianluca
    Schamper, Cyril
    Behroozmand, Ahmad Ali
    Binley, Andrew
    Nielsen, Emil
    Efferso, Flemming
    Christensen, Niels Boie
    Sorensen, Kurt
    Foged, Nikolaj
    Vignoli, Giulio
    [J]. EXPLORATION GEOPHYSICS, 2015, 46 (03) : 223 - 235
  • [4] Cockett Rowan, 2016, Leading Edge, V35, P47, DOI 10.1190/tle35080703.1
  • [5] SIMPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications
    Cockett, Rowan
    Kang, Seogi
    Heagy, Lindsey J.
    Pidlisecky, Adam
    Oldenburg, Douglas W.
    [J]. COMPUTERS & GEOSCIENCES, 2015, 85 : 142 - 154
  • [6] FDEMtools: a MATLAB package for FDEM data inversion
    Deidda, G. P.
    Diaz de Alba, P.
    Fenu, C.
    Lovicu, G.
    Rodriguez, G.
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (04) : 1313 - 1327
  • [7] Forward Electromagnetic Induction Modelling in a Multilayered Half-Space: An Open-Source Software Tool
    Deidda, Gian Piero
    Diaz de Alba, Patricia
    Pes, Federica
    Rodriguez, Giuseppe
    [J]. REMOTE SENSING, 2023, 15 (07)
  • [8] Inversion of Multiconfiguration Complex EMI Data with Minimum Gradient Support Regularization: A Case Study
    Deidda, Gian Piero
    de Alba, Patricia Diaz
    Rodriguez, Giuseppe
    Vignoli, Giulio
    [J]. MATHEMATICAL GEOSCIENCES, 2020, 52 (07) : 945 - 970
  • [9] Sensitivity Analysis and Classification Algorithms Comparison for Underground Target Detection
    Duan, Shihong
    Li, Yue
    Wan, Yadong
    Wang, Peng
    Wang, Zhen
    Li, Na
    [J]. IEEE ACCESS, 2019, 7 : 116227 - 116246
  • [10] A matlab-based frequency-domain electromagnetic inversion code (FEMIC) with graphical user interface
    Elwaseif, M.
    Robinson, J.
    Day-Lewis, F. D.
    Ntarlagiannis, D.
    Slater, L. D.
    Lane, J. W., Jr.
    Minsley, B. J.
    Schultz, G.
    [J]. COMPUTERS & GEOSCIENCES, 2017, 99 : 61 - 71