Optimal Sensor Placement and Multimodal Fusion for Human Activity Recognition in Agricultural Tasks

被引:2
|
作者
Benos, Lefteris [1 ]
Tsaopoulos, Dimitrios [1 ]
Tagarakis, Aristotelis C. [1 ]
Kateris, Dimitrios [1 ]
Bochtis, Dionysis [1 ,2 ]
机构
[1] Ctr Res & Technol Hellas CERTH, Inst Bioecon & Agritechnol IBO, GR-57001 Thessaloniki, Greece
[2] FarmB Digital Agr, Doiraniis 17, Thessaloniki GR-54639, Greece
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
Long Short-Term Memory (LSTM) networks; wearable sensors; multi-sensor information fusion; human-robot collaboration; human factors; cost-optimal system configuration; ROBOTS; SPINE;
D O I
10.3390/app14188520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study examines the impact of sensor placement and multimodal sensor fusion on the performance of a Long Short-Term Memory (LSTM)-based model for human activity classification taking place in an agricultural harvesting scenario involving human-robot collaboration. Data were collected from twenty participants performing six distinct activities using five wearable inertial measurement units placed at various anatomical locations. The signals collected from the sensors were first processed to eliminate noise and then input into an LSTM neural network for recognizing features in sequential time-dependent data. Results indicated that the chest-mounted sensor provided the highest F1-score of 0.939, representing superior performance over other placements and combinations of them. Moreover, the magnetometer surpassed the accelerometer and gyroscope, highlighting its superior ability to capture crucial orientation and motion data related to the investigated activities. However, multimodal fusion of accelerometer, gyroscope, and magnetometer data showed the benefit of integrating data from different sensor types to improve classification accuracy. The study emphasizes the effectiveness of strategic sensor placement and fusion in optimizing human activity recognition, thus minimizing data requirements and computational expenses, and resulting in a cost-optimal system configuration. Overall, this research contributes to the development of more intelligent, safe, cost-effective adaptive synergistic systems that can be integrated into a variety of applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Centaur: Robust Multimodal Fusion for Human Activity Recognition
    Xaviar, Sanju
    Yang, Xin
    Ardakanian, Omid
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 18578 - 18591
  • [2] Human Activity Recognition with Multimodal Sensing of Wearable Sensors
    Ma, Chun-Mei
    Zhao, Hui
    Li, Ying
    Wu, Pan-Pan
    Zhang, Tao
    Wang, Bo-Jue
    Journal of Computers (Taiwan), 2021, 32 (06) : 24 - 37
  • [3] Group Decision Making-Based Fusion for Human Activity Recognition in Body Sensor Networks
    Tian, Yiming
    Zhang, Jie
    Chen, Qi
    Hou, Shuping
    Xiao, Li
    SENSORS, 2022, 22 (21)
  • [4] Multi-Sensor Fusion for Activity Recognition-A Survey
    Aguileta, Antonio A.
    Brena, Ramon F.
    Mayora, Oscar
    Molino-Minero-Re, Erik
    Trejo, Luis A.
    SENSORS, 2019, 19 (17)
  • [5] Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning
    Banos, Oresti
    Calatroni, Alberto
    Damas, Miguel
    Pomares, Hector
    Roggen, Daniel
    Rojas, Ignacio
    Villalonga, Claudia
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3169 - 3197
  • [6] Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning
    Oresti Banos
    Alberto Calatroni
    Miguel Damas
    Hector Pomares
    Daniel Roggen
    Ignacio Rojas
    Claudia Villalonga
    Neural Processing Letters, 2021, 53 : 3169 - 3197
  • [7] Wearable multi-sensor data fusion approach for human activity recognition using machine learning algorithms
    Vidya, B.
    Sasikumar, P.
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 341
  • [8] Human Activity Recognition With Accelerometer and Gyroscope: A Data Fusion Approach
    Webber, Mitchell
    Rojas, Raul Fernandez
    IEEE SENSORS JOURNAL, 2021, 21 (15) : 16979 - 16989
  • [9] Human Activity Recognition with IMU and Vital Signs Feature Fusion
    Xefteris, Vasileios-Rafail
    Tsanousa, Athina
    Mavropoulos, Thanassis
    Meditskos, Georgios
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 287 - 298
  • [10] Human activity recognition based on a sensor weighting hierarchical classifier
    Oresti Banos
    Miguel Damas
    Hector Pomares
    Fernando Rojas
    Blanca Delgado-Marquez
    Olga Valenzuela
    Soft Computing, 2013, 17 : 333 - 343