The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides)

被引:7
|
作者
Liu C. [1 ]
Pan K. [1 ]
Xu H. [1 ]
Song Y. [1 ]
Qi X. [1 ]
Lu Y. [1 ]
Jiang X. [1 ]
Liu H. [1 ]
机构
[1] College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling
关键词
Enrofloxacin; Intestinal microbiota; Intestine health; Micropterus salmoides; Oxidative stress;
D O I
10.1016/j.chemosphere.2023.140751
中图分类号
学科分类号
摘要
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Dietary arginine levels affect growth performance, intestinal antioxidant capacity and immune responses in largemouth bass (Micropterus salmoides)
    Yu, Yayun
    Huang, Dongyu
    Zhang, Lin
    Chen, Xiaoru
    Wang, Yongli
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    AQUACULTURE REPORTS, 2023, 32
  • [32] Dietary sodium butyrate positively modulated intestinal microbial community, but did not promote growth of largemouth bass (Micropterus salmoides)
    Li, Xiaoqin
    Lin, Xia
    Chen, Wenjie
    Leng, Xiangjun
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (02) : 745 - 755
  • [33] Dietary sodium butyrate positively modulated intestinal microbial community, but did not promote growth of largemouth bass (Micropterus salmoides)
    Xiaoqin Li
    Xia Lin
    Wenjie Chen
    XiangJun Leng
    Fish Physiology and Biochemistry, 2024, 50 : 745 - 755
  • [34] EFFECTS OF SULFURIC-ACID EXPOSURE ON THE BEHAVIOR OF LARGEMOUTH BASS, MICROPTERUS-SALMOIDES
    ORSATTI, SD
    COLGAN, PW
    ENVIRONMENTAL BIOLOGY OF FISHES, 1987, 19 (02) : 119 - 129
  • [35] High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides)
    Zhao, Liulan
    Liang, Ji
    Chen, Fukai
    Tang, Xiaohong
    Liao, Lei
    Liu, Qiao
    Luo, Jie
    Du, Zongjun
    Li, Zhiqiong
    Luo, Wei
    Yang, Song
    Rahimnejad, Samad
    FISH & SHELLFISH IMMUNOLOGY, 2021, 119 : 308 - 317
  • [36] Combined exposure to hypoxia and ammonia aggravated biological effects on glucose metabolism, oxidative stress, inflammation and apoptosis in largemouth bass (Micropterus salmoides)
    Zhao, Liulan
    Cui, Can
    Liu, Qiao
    Sun, Junlong
    He, Kuo
    Adam, Ahmed Abdi
    Luo, Jie
    Li, Zhiqiong
    Wang, Yan
    Yang, Song
    AQUATIC TOXICOLOGY, 2020, 224
  • [37] Effects of Dietary Phospholipids on Growth Performance, Digestive Enzymes Activity and Intestinal Health of Largemouth Bass (Micropterus salmoides) Larvae
    Wang, Shilin
    Han, Zhihao
    Turchini, Giovanni M.
    Wang, Xiaoyuan
    Fang, Zishuo
    Chen, Naisong
    Xie, Ruitao
    Zhang, Haitao
    Li, Songlin
    FRONTIERS IN IMMUNOLOGY, 2022, 12
  • [38] Effects of cottonseed protein concentrate on growth performance, hepatic function and intestinal health in juvenile largemouth bass, Micropterus salmoides
    He, Guanglun
    Zhang, Tingting
    Zhou, Xinmei
    Liu, Xinping
    Sun, Hao
    Chen, Yongjun
    Tan, Beiping
    Lin, Shimei
    AQUACULTURE REPORTS, 2022, 23
  • [39] Effects of feeding pattern on growth, immunity and intestinal flora of GIFT tilapia (Oreochromis niloticus) and largemouth bass (Micropterus salmoides)
    Wang, Yuning
    Wang, Rui
    Yang, Ruiyi
    Zhu, Shaoyu
    Yao, Feng
    Zhang, Xiaohua
    Yang, Yanou
    AQUACULTURE REPORTS, 2025, 42
  • [40] Effects of Atractylodes macrocephala polysaccharide on growth performance, serum biochemical indexes, and intestinal microflora of largemouth bass (Micropterus salmoides)
    Wen, Xingxing
    Ge, Lingrui
    Liu, Kejun
    Tan, Shengguo
    Hu, Yi
    FRONTIERS IN MARINE SCIENCE, 2024, 11