Analysis of the Improvement of Photoelectrical Properties of Cu2ZnSn(S,Se)4 Thin Film and Solar Cells Via Cation Doping

被引:0
|
作者
Kim, Youngrog [1 ,2 ]
Jang, Suyoung [1 ,2 ]
Jang, Jun Sung [1 ,2 ]
Kang, Dong Hyun [1 ,2 ]
Kim, Jin Hyeok [1 ,2 ]
机构
[1] Chonnam Natl Univ, Optoelect Convergence Res Ctr, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
来源
KOREAN JOURNAL OF MATERIALS RESEARCH | 2024年 / 34卷 / 10期
基金
新加坡国家研究基金会;
关键词
cation doping; thin films; photovoltaic; sputtering; Cu2ZnSn(S; Se)(4); EFFICIENCY; LAYER;
D O I
10.3740/MRSK.2024.34.10.515
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solar energy has been recognized as an alternative energy source that can help address fuel depletion and climate change issues. As a renewable energy alternative to fossil fuels, it is an eco-friendly and unlimited energy source. Among solar cells, thin film Cu2ZnSn(S,Se)(4) (CZTSSe) is currently being actively studied as an alternative to heavily commercialized Cu (In,Ga)Se-2 (CIGS) thin film solar cells, which rely upon costly and scarce indium and gallium. Currently, the highest efficiency achieved by CZTSSe cells is 14.9 %, lower than the CIGS record of 23.35 %. When applied to devices, CZTSSe thin films perform poorly compared to other materials due to problems including lattice defects, conduction band offset, secondary phase information, and narrow stable phase regions, so improving their performance is essential. Research into ways of improving performance by doping with Germanium and Cadmium is underway. Specifically, Ge can be doped into CZTSSe, replacing Sn to reduce pinholes and bulk recombination. Additionally, partially replacing Zn with Cd can facilitate grain growth and suppress secondary phase formation. In this study, we analyzed the device's performance after doping Ge into CZTSSe thin film using evaporation, and doping Cd using chemical bath deposition. The Ge doped thin film showed a larger bandgap than the undoped reference thin film, achieving the highest V(oc )of 494 mV in the device. The Cd doped thin film showed a smaller band- gap than the undoped reference thin film, with the highest J(sc)of 36.9 mA/cm(2). As a result, the thin film solar cells achieved a power conversion efficiency of 10.84 %, representing a 20 % improvement in power conversion efficiency compared to the undoped reference device.
引用
收藏
页码:515 / 521
页数:7
相关论文
共 50 条
  • [1] Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells
    Zhang Xue
    Han Yang
    Chai Shuang-Zhi
    Hu Nan-Tao
    Yang Zhi
    Geng Hui-Juan
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (06) : 1330 - 1346
  • [2] Flexible Cu2ZnSn(S,Se)4 thin film solar cells with lithium doping via doctor blading
    Xu, Han
    Ge, Sijie
    Wang, Tao
    Gu, Ening
    Lin, Xianzhong
    SCIENCE CHINA-MATERIALS, 2024, 67 (01) : 67 - 75
  • [3] Sodium doping of solution-processed Cu2ZnSn(S,Se)4 thin film and its effect on Cu2ZnSn(S,Se)4 based solar cells
    Jiang, Dongyue
    Sui, Yingrui
    He, Wenjie
    Wang, Zhanwu
    Wang, Fengyou
    Yao, Bin
    Yang, Lili
    VACUUM, 2021, 184
  • [4] Technological status of Cu2ZnSn(S,Se)4 thin film solar cells
    Fella, Carolin M.
    Romanyuk, Yaroslav E.
    Tiwari, Ayodhya N.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 : 276 - 277
  • [5] Crystallization mechanism and defect passivation of Cu2ZnSn(S,Se)4 thin film solar cells via in situ potassium doping
    Dong, Liangzheng
    Tao, Shengye
    Zhao, Ming
    Zhuang, Daming
    Wang, Yafei
    Wang, Hanpeng
    Jia, Mengyao
    Han, Junsu
    Zhu, Hongwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (37) : 20139 - 20150
  • [6] Solution-Processed Cu2ZnSn(S, Se)4 Thin Film Solar Cells
    Cui G.
    Yang Y.
    Li Y.
    Wang Y.
    Zhu C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (03): : 483 - 494
  • [7] Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells
    Yang, Kee-Jeong
    Sim, Jun-Hyoung
    Son, Dae-Ho
    Kim, Young-Ill
    Kim, Dae-Hwan
    Nam, Dahyun
    Cheong, Hyeonsik
    Kim, SeongYeon
    Kim, JunHo
    Kang, Jin-Kyu
    NANO ENERGY, 2017, 35 : 52 - 61
  • [8] Influence of NaF addition on Cu2ZnSn(S,Se)4 thin film solar cells
    Cai, Chung-Hao
    Wei, Shih-Yuan
    Huang, Wei-Chih
    Lai, Chih-Huang
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [9] Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
    Zhang C.
    Zhong J.
    Tang J.
    Frontiers of Optoelectronics, 2015, 8 (3) : 252 - 268
  • [10] Nanoscale sharp bandgap gradient for efficiency improvement of Cu2ZnSn(S, Se)4 thin film solar cells
    Zhang, Ziqi
    Qi, Yanlong
    Zhao, Weiqiang
    Liu, Jingling
    Liu, Xinsheng
    Cheng, Ke
    Du, Zuliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910