Learning to Adapt Using Test-Time Images for Salient Object Detection in Optical Remote Sensing Images

被引:0
作者
Huang, Kan [1 ]
Fang, Leyuan [2 ]
Tian, Chunwei [3 ]
机构
[1] Shanghai Maritime Univ, Sch Informat Engn, Shanghai 201306, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[3] Northwestern Polytech Univ, Sch Software, Xian 710072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
美国国家科学基金会;
关键词
Training; Remote sensing; Adaptation models; Object detection; Image reconstruction; Atmospheric modeling; Optical sensors; Optical imaging; Feature extraction; Decoding; Optical remote sensing images; salient object detection (SOD); self-supervised learning (SSL); test-time adaptation; NETWORK; ATTENTION; MODEL;
D O I
10.1109/TGRS.2024.3504845
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Current methods for salient object detection in optical remote sensing images (RSI-SOD) adhere strictly to the conventional supervised train-test paradigm, where models remain fixed after training and are directly applied to test samples. However, this paradigm faces significant challenges in adapting to test-time images due to the inherent variability in remote sensing scenes. Salient objects exhibit considerable differences in size, type, and topology across RSIs, complicating accurate localization in unseen test images. Moreover, the acquisition of RSIs is highly susceptible to atmospheric conditions, often leading to degraded image quality and a notable domain shift between training and testing phases. In this work, we explore test-time model adaptation for RSI-SOD and introduce a novel multitask collaboration approach to tackle these challenges. Our approach integrates a self-supervised auxiliary task, specifically image reconstruction, with the primary supervised task of saliency prediction to achieve collaborative learning. This is accomplished through an architecture that comprises a shared feature encoder and two distinct task-specific decoders. Most importantly, the self-supervised image reconstruction task optimizes model parameters using unlabeled test-time images, allowing adaptation to test distributions and enabling flexibly scene-dependent representation learning. In addition, we design a cross-task modulation module (CMM) positioned between the task-specific decoders, which fully exploits intertask correlations to enhance the adjustment of saliency representations. Extensive experimental evaluations confirm the superiority of our method across three widely used RSI-SOD benchmarks and validate the robustness of our proposed test-time adaptation strategy against diverse types of RSI corruptions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Toward Integrity and Detail With Ensemble Learning for Salient Object Detection in Optical Remote-Sensing Images
    Liu, Kangjie
    Zhang, Borui
    Lu, Jiwen
    Yan, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [2] Salient Object Detection in Optical Remote Sensing Images Driven by Transformer
    Li, Gongyang
    Bai, Zhen
    Liu, Zhi
    Zhang, Xinpeng
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5257 - 5269
  • [3] Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical Remote Sensing Images
    Zhou, Xiaofei
    Shen, Kunye
    Liu, Zhi
    Gong, Chen
    Zhang, Jiyong
    Yan, Chenggang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Adaptive Spatial Tokenization Transformer for Salient Object Detection in Optical Remote Sensing Images
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Zeng, Dan
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 526 - 538
  • [6] Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
    Li, Gongyang
    Liu, Zhi
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1305 - 1317
  • [8] Progressive Enhancement of Foreground Features for Salient Object Detection in Optical Remote Sensing Images
    Meng, Lingbing
    Li, Haiqun
    Han, Huihui
    Xu, Meng
    Wu, Jinhua
    Hou, Shuonan
    Duan, Weiwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7572 - 7591
  • [9] Adjacent Complementary Network for Salient Object Detection in Optical Remote Sensing Images
    Song, Dawei
    Dong, Yongsheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60