When Federated Learning Meets Medical Image Analysis: A Systematic Review with Challenges and Solutions

被引:0
|
作者
Yang, Tian [1 ]
Yu, Xinhui [1 ]
Mckeown, Martin J. [2 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Med, Vancouver, BC, Canada
关键词
Federated learning; deep learning; medical image analysis; SEGMENTATION;
D O I
10.1561/116.20240048
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has been a powerful tool for medical image analysis, but large amount of high-quality labeled datasets are generally required to train deep learning models with satisfactory performance and generalization capability. In medical applications, collecting such large-scale datasets involves specific challenges: data annotation is time-consuming and expert-requisite, and privacy restrictions make it impractical for different institutions to share their own data to construct single large datasets. Federated learning (FL) is an effective method for addressing such concerns since it allows multiple institutions to collaboratively train deep learning models, without sharing individual data samples directly, in line with privacy protection requirements. However, there are numerous challenges when applying FL in medical image analysis, including data heterogeneity and low label quality, that may impede FL from being implemented effectively. This paper conducts a systematic literature review of the challenges and solutions when applying FL in medical image analysis. We present a novel taxonomy of FL-specific challenges in medical image analysis research and summarize representative solutions for these challenges. We anticipate this review will be proved helpful for researchers to have better knowledge of challenges and existing solutions in related fields, and provide inspiration for developing more advanced solutions in the future.
引用
收藏
页数:55
相关论文
共 50 条
  • [41] A review of deep learning approaches in clinical and healthcare systems based on medical image analysis
    Helaly, Hadeer A.
    Badawy, Mahmoud
    Haikal, Amira Y.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 36039 - 36080
  • [42] Transfer learning for medical image classification: a literature review
    Kim, Hee E.
    Cosa-Linan, Alejandro
    Santhanam, Nandhini
    Jannesari, Mahboubeh
    Maros, Mate E.
    Ganslandt, Thomas
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [43] When Deep Learning Meets Digital Image Correlation
    Boukhtache, S.
    Abdelouahab, K.
    Berry, F.
    Blaysat, B.
    Grediac, M.
    Sur, F.
    OPTICS AND LASERS IN ENGINEERING, 2021, 136
  • [44] Federated Contrastive Learning for Volumetric Medical Image Segmentation
    Wu, Yawen
    Zeng, Dewen
    Wang, Zhepeng
    Shi, Yiyu
    Hu, Jingtong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 367 - 377
  • [45] A Comprehensive Review and Analysis of Deep Learning-Based Medical Image Adversarial Attack and Defense
    Muoka, Gladys W.
    Yi, Ding
    Ukwuoma, Chiagoziem C.
    Mutale, Albert
    Ejiyi, Chukwuebuka J.
    Mzee, Asha Khamis
    Gyarteng, Emmanuel S. A.
    Alqahtani, Ali
    Al-antari, Mugahed A.
    MATHEMATICS, 2023, 11 (20)
  • [46] Federated Texture Classification: Implementing Colorectal Histology Image Analysis using Federated Learning
    Bangare, Jyoti L.
    Sable, Nilesh P.
    Mahalle, Parikshit N.
    Shinde, Gitanjali Rahul
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (02) : 131 - 147
  • [47] Medical deep learning-A systematic meta-review
    Egger, Jan
    Gsaxner, Christina
    Pepe, Antonio
    Pomykala, Kelsey L.
    Jonske, Frederic
    Kurz, Manuel
    Li, Jianning
    Kleesiek, Jens
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [48] Symbolic analysis meets federated learning to enhance malware identifier
    Van Ouytsel, Charles-Henry Bertrand
    Dam, Khanh Huu The
    Legay, Axel
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, ARES 2022, 2022,
  • [49] Trends in Deep Learning for Medical Hyperspectral Image Analysis
    Khan, Uzair
    Paheding, Sidike
    Elkin, Colin P.
    Devabhaktuni, Vijaya Kumar
    IEEE ACCESS, 2021, 9 (09): : 79534 - 79548
  • [50] A configurable deep learning framework for medical image analysis
    Chen, Jianguo
    Yang, Nan
    Zhou, Mimi
    Zhang, Zhaolei
    Yang, Xulei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10) : 7375 - 7392