共 75 条
[1]
Alrasheedi A., Almalaq A., Hybrid deep learning applied on Saudi smart grids for short-term load forecasting, Mathematics, 10, 15, (2022)
[2]
Yeh W.-C., He M.-F., Huang C.-L., Tan S.-Y., Zhang X., Huang Y., Li L., New genetic algorithm for economic dispatch of stand-alone threemodular microgrid in DongAo island, Appl. Energy, 263, (2020)
[3]
Tsegaye S., Shewarega F., Bekele G., Artificial intelligence based security constrained economic dispatch of Ethiopian renewable energy systems: A comparative study, Proc. Int. Conf. Adv. Sci. Technol., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 412, pp. 522-542, (2022)
[4]
Tsegaye S., Bekele G., Optimal generation dispatch of Ethiopian power system using hybrid genetic algorithm-hopfield neural network, EAI Endorsed Trans. Energy Web, 9, 37, pp. 1-15, (2022)
[5]
Abdel-Basset M., Hawash H., Sallam K., Askar S.S., Abouhawwash M., STLF-Net: Two-stream deep network for shortterm load forecasting in residential buildings, J. King Saud Univ., Comput. Inf. Sci, 34, 7, pp. 4296-4311, (2022)
[6]
Roy P., Chakrabarti A., Modified shuffled frog leaping algorithm for solving economic load dispatch problem, Energy Power Eng, 3, 4, pp. 551-556, (2011)
[7]
Abdulrahman M.L., Ibrahim K.M., Gital A.Y., Zambuk F.U., Ja'afaru B., Yakubu Z.I., Ibrahim A., A review on deep learning with focus on deep recurrent neural network for electricity forecasting in residential building, Proc. Comput. Sci, 193, pp. 141-154, (2021)
[8]
Arastehfar S., Matinkia M., Jabbarpour M.R., Short-term residential load forecasting using graph convolutional recurrent neural networks, Eng. Appl. Artif. Intell, 116, (2022)
[9]
Mehmood Butt F., Hussain L., Mahmood A., Lone K.J., Artificial intelligence based accurately load forecasting system to forecast short and medium-term load demands, Math. Biosci. Eng, 18, 1, pp. 400-425, (2021)
[10]
Kuo P.-H., Huang C.-J., A high precision artificial neural networks model for short-term energy load forecasting, Energies, 11, 1, (2018)