One-pot synthesis of heterostructures based on S-doped polymeric carbon nitride and carbon dots for enhancing photocatalytic H2 production

被引:0
作者
Campos, Rafael Alves [1 ]
Mota, Adnaildo Miranda [1 ]
Mercante, Luiza Amim [1 ]
Silva, Luciana Almeida [1 ,2 ]
机构
[1] Univ Fed Bahia, Inst Quim, Campus Ondina, BR-40170290 Salvador, BA, Brazil
[2] Univ Fed Bahia, INCT, Inst Nacl Ciencia & Tecnol, Energia & Ambiente, BR-40170290 Salvador, BA, Brazil
来源
MOLECULAR CATALYSIS | 2025年 / 576卷
关键词
Polymeric carbon nitride; Sulfur doping; Carbon dots; Heterostructure; Photocatalysis; Hydrogen production; HYDROGEN EVOLUTION; QUANTUM DOTS; SULFUR; NANOSHEETS; G-C3N4; WATER;
D O I
10.1016/j.mcat.2025.114941
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymeric carbon nitride (PCN) is a promising metal-free visible-light-driven material for solar hydrogen production because of its photocatalytic response to visible light and easy fabrication. However, its photocatalytic activity is limited due to low absorption in a wide solar spectrum, poor charge separation efficiency, and low charge carrier mobility. Herein, we present a strategy to address these issues by combining sulfur-doped PCN (SPCN) with carbon dots (CDs). To this end, we developed a straightforward synthetic procedure based on the calcination of thiourea and small amounts of citric acid. The presence of citric acid in the reaction medium led to the formation of carbon dots (CD) on the surface of the semiconductor material, enhancing light absorption and improving the photocatalytic production of H2. Different amounts of citric acid were used to explore the influence of the CDs on the hydrogen production of SPCN. The obtained materials were thermally exfoliated to increase the surface area and then characterized using XRD, FT-IR, DRS, SEM, and BET. The optimal SPCN-CD heterostructure, obtained with 60 mg of citric acid, exhibited improved H2 production activity of 1756 mu mol g- 1 h- 1 of H2 over six hours when irradiated with a solar simulator due to a narrower band gap. Our study provides valuable insights for designing metal-free heterostructures for photocatalysis applications.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Guarieiro L., dos Anjos J., da Silva L., Santos A., Calixto E., Pessoa F., de Almeida J., Andrade Filho M., Marinho F., da Rocha G., de Andrade J., Technological perspectives and economic aspects of green hydrogen in the energetic transition: challenges for chemistry, J. Braz. Chem. Soc., (2022)
[2]  
Wei Y., Wu Y., Wang J., Wu Y.-H., Weng Z., Huang W.-Y., Yang K., Zhang J.-L., Li Q., Lu K.-Q., Han B., Rationally designed dual cocatalysts on ZnIn <sub>2</sub> S <sub>4</sub> nanoflowers for photoredox coupling of benzyl alcohol oxidation with H <sub>2</sub> evolution, J. Mater. Chem. a Mater., 12, pp. 18986-18992, (2024)
[3]  
Shao X.-N., Wang Y.-F., Qi M.-Y., Tang Z.-R., MoS2 decorated CdS composite catalyst for photoredox-mediated C–N coupling of amines to imines and hydrogen production, Mol. Catal., 557, (2024)
[4]  
Mo Q.-L., Xiong R., Dong J.-H., Sa B.-S., Zheng J.-Y., Chen Q., Wu Y., Xiao F.-X., Identification of origin of insulating polymer maneuvered photoredox catalysis, Chin. J. Catal., 63, pp. 109-123, (2024)
[5]  
Liang H., Liu B.-J., Tang B., Zhu S.-C., Li S., Ge X.-Z., Li J.-L., Zhu J.-R., Xiao F.-X., Atomically precise metal nanocluster-mediated photocatalysis, ACS. Catal., 12, pp. 4216-4226, (2022)
[6]  
Zhu S.-C., Xiao F.-X., Transition metal chalcogenides quantum dots: emerging building blocks toward solar-to-hydrogen conversion, ACS. Catal., 13, pp. 7269-7309, (2023)
[7]  
Wang R., Zheng Z., Li Z., Xu X., Photocatalytic C-C coupling and H2 production with tunable selectivity based on ZnxCd1-xS solid solutions for benzyl alcohol conversions under visible light, Chem. Eng. J., 480, (2024)
[8]  
Yan Y., Wu Y., Wu Y., Weng Z., Liu S., Liu Z., Lu K., Han B., Recent advances of CeO <sub>2</sub> -based composite materials for photocatalytic applications, ChemSusChem., 17, (2024)
[9]  
Lu K.-Q., Hao J.-G., Wei Y., Weng B., Ge S., Yang K., Lu S., Yang M.-Q., Liao Y., Photocatalytic conversion of diluted CO <sub>2</sub> into tunable syngas via modulating transition metal hydroxides, Inorg. Chem., 63, pp. 795-802, (2024)
[10]  
Baranowska D., Zielinkiewicz K., Kedzierski T., Mijowska E., Zielinska B., Heterostructure based on exfoliated graphitic carbon nitride coated by porous carbon for photocatalytic H2 evolution, Int. J. Hydrogen. Energy, 47, pp. 35666-35679, (2022)