On Study of Multiset Dimension in Fuzzy Zero Divisor Graphs Associated with Commutative Rings

被引:0
作者
Ali, Nasir [1 ,2 ]
Siddiqui, Hafiz Muhammad Afzal [1 ]
Qureshi, Muhammad Imran [2 ]
Abdalla, Manal Elzain Mohamed [3 ]
Abd EL-Gawaad, N. S. [4 ]
Tolasa, Fikadu Tesgera [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Vehari Campus, Vehari 61100, Pakistan
[3] King Khalid Univ, Appl Coll, Abha 62529, Saudi Arabia
[4] King Khalid Univ, Appl Coll, Muhayil Asir, Abha 62529, Saudi Arabia
[5] Dambi Dollo Univ, Oromia 57555, Ethiopia
关键词
Algebraic structures; Fuzzy zero divisor graph (FZDG); Multiset dimension; Zero divisor graph; Resolvability;
D O I
10.1007/s44196-024-00706-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the concept of fuzzy zero divisor graph (FZDG) for a commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} denoted by Gamma fR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left(\text{R}\right)$$\end{document}. We explore the multiset dimension (Mdim), a new variant of the metric dimension (MD), specifically in the context of FZDGs. To illustrate our findings, we analyze the FZDG for the ring Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_{n}$$\end{document} of integers modulon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} of integers modulo n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, denoted by Gamma fZn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left({\mathbb{Z}}_{n}\right).$$\end{document} We compute the multiset dimension for all possible values of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} for the FZDG Gamma fZn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left({\mathbb{Z}}_{n}\right)$$\end{document}, providing significant theoretical insights into its structure. Our results not only advance the understanding of FZDGs and their multiset dimensions but also have practical implications across various fields, including cryptography, coding theory, and network analysis. This study lays the groundwork for future research on the application of fuzzy concepts in graph theory and algebraic structures.
引用
收藏
页数:10
相关论文
共 18 条
  • [1] Ali N, 2024, Arxiv, DOI arXiv:2405.06180
  • [2] A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs
    Ali, Nasir
    Siddiqui, Hafiz Muhammad Afzal
    Riaz, Muhammad Bilal
    Qureshi, Muhammad Imran
    Akgul, Ali
    [J]. HELIYON, 2024, 10 (10)
  • [3] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [4] COLORING OF COMMUTATIVE RINGS
    BECK, I
    [J]. JOURNAL OF ALGEBRA, 1988, 116 (01) : 208 - 226
  • [5] A Fuzzy Graph Theory Approach to the Facility Location Problem: A Case Study in the Indian Banking System
    Bhattacharya, Anushree
    Pal, Madhumangal
    [J]. MATHEMATICS, 2023, 11 (13)
  • [6] A fuzzy mathematical model for tumor growth pattern using generalized Hukuhara derivative and its numerical analysis
    Khaliq, Rubeena
    Iqbal, Pervaiz
    Bhat, Shahid Ahmad
    Sheergojri, Aadil Rashid
    [J]. APPLIED SOFT COMPUTING, 2022, 118
  • [7] Kuppan A, 2021, TWMS J APPL ENG MATH, V11, P42
  • [8] Pal A., 2016, Int. J. Appl. Fuzzy Sets Artif. Intell, V6, P101
  • [9] On the metric dimension of a zero-divisor graph
    Pirzada, S.
    Raja, Rameez
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1399 - 1408
  • [10] Ravi Sankar J., 2012, Int. J. Math. Res, V5, P5