A fault diagnosis framework using unlabeled data based on automatic clustering with meta-learning
被引:1
作者:
Zhao, Zhiqian
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
Zhao, Zhiqian
[1
]
Jiao, Yinghou
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
Jiao, Yinghou
[1
]
Xu, Yeyin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Astronaut, Xian 710049, Shaanxi, Peoples R ChinaHarbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
Xu, Yeyin
[2
]
Chen, Zhaobo
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R ChinaHarbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
Chen, Zhaobo
[1
]
论文数: 引用数:
h-index:
机构:
Zio, Enrico
[3
,4
]
机构:
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Astronaut, Xian 710049, Shaanxi, Peoples R China
[3] Mine Paris PSL Univ, Ctr Res Risk & Crises CRC, Rue Claude Daunesse 1, F-06904 Sophia Antipolis, France
[4] Politecn Milan, Energy Dept, Via La Masa 34, I-20156 Milan, Italy
With the growth of the industrial internet of things, the poor performance of conventional deep learning models hinders the application of intelligent diagnosis methods in industrial situations such as lack of fault samples and difficulties in data labeling. To solve the above problems, we propose a fault diagnosis framework based on unsupervised meta-learning and contrastive learning, which is called automatic clustering with meta- learning (ACML). First, the amount of data is expanded through data augmentation approaches, and a feature generator is constructed to extract highly discriminative features from the unlabeled dataset using contrastive learning. Then, a cluster generator is used to automatically divide cluster partitions and add pseudo-labels for these. Finally, the classification tasks are derived through taking original samples in the partitions, which are embedded in the meta-learner for fault diagnosis. In the meta-learning stage, we split out two subsets from task and feed them into the inner and outer loops to maintain the class consistency of the real labels. After training, ACML transfers its prior expertise to the unseen task to efficiently complete the categorization of new faults. ACML is applied to two cases concerning a public dataset and a self-constructed dataset, demonstrate that ACML achieves good diagnostic performance, outperforming popular unsupervised methods.
机构:
Hanyang Univ, Dept Data Sci, Seoul 04763, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Baik, Sungyong
Choi, Myungsub
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Adv Inst Technol, Seoul 04763, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Choi, Myungsub
Choi, Janghoon
论文数: 0引用数: 0
h-index: 0
机构:
Kyungpook Natl Univ, Grad Sch Data Sci, Seoul 41566, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Choi, Janghoon
Kim, Heewon
论文数: 0引用数: 0
h-index: 0
机构:
Soongsil Univ, Coll IT, Global Sch Media, Seoul 06978, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Kim, Heewon
Lee, Kyoung Mu
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Automat & Syst Res Inst ASRI, Dept Elect & Comp Engn, Seoul 08826, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
机构:
Zhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Chen, Yongyi
Zhang, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Zhang, Dan
Zhang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
Beihang Univ, Ningbo Inst Technol, Ningbo 315323, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Zhang, Hui
Wang, Qing-Guo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ Zhuhai, Zhuhai 519088, Peoples R China
BNU HKBU United Int Coll, Zhuhai 519087, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
机构:
Hanyang Univ, Dept Data Sci, Seoul 04763, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Baik, Sungyong
Choi, Myungsub
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Adv Inst Technol, Seoul 04763, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Choi, Myungsub
Choi, Janghoon
论文数: 0引用数: 0
h-index: 0
机构:
Kyungpook Natl Univ, Grad Sch Data Sci, Seoul 41566, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Choi, Janghoon
Kim, Heewon
论文数: 0引用数: 0
h-index: 0
机构:
Soongsil Univ, Coll IT, Global Sch Media, Seoul 06978, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
Kim, Heewon
Lee, Kyoung Mu
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Automat & Syst Res Inst ASRI, Dept Elect & Comp Engn, Seoul 08826, South KoreaHanyang Univ, Dept Data Sci, Seoul 04763, South Korea
机构:
Zhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Chen, Yongyi
Zhang, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Zhang, Dan
Zhang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
Beihang Univ, Ningbo Inst Technol, Ningbo 315323, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China
Zhang, Hui
Wang, Qing-Guo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ Zhuhai, Zhuhai 519088, Peoples R China
BNU HKBU United Int Coll, Zhuhai 519087, Peoples R ChinaZhejiang Univ Technol, Dept Automat, Hangzhou 310023, Peoples R China