Asynchronous Federated Learning via Over-the-Air Computation in LEO Satellite Networks

被引:0
|
作者
Huang, Yansong [1 ]
Li, Xuan [1 ]
Zhao, Moke [1 ]
Li, Haiyan [1 ]
Peng, Mugen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
关键词
Satellites; Low earth orbit satellites; Computational modeling; Atmospheric modeling; Convergence; Deep learning; Data models; Training; Training data; Couplings; Low-earth orbit satellite networks; asynchronous federated learning; over-the-air computation; CHANNEL; OPTIMIZATION; PERFECT;
D O I
10.1109/TWC.2024.3487986
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Owing to its ability to offer collaborative data utilization while ensuring data privacy, federated learning (FL) provides a promising paradigm to enable cooperative intelligent tasks across multiple low-earth orbit (LEO) satellites, such as carbon estimation, traffic surveillance, and forest fire detection. Although the advantages of pushing intelligence to satellites are multi-fold, limited communication channels along with the rigid global model aggregation conditions result in dramatic convergence delays. In order to reduce the convergence time, we propose an asynchronous FL framework in LEO satellite networks by exploiting multiple high-altitude platforms for model aggregation, where the advanced over-the-air computation (AirComp) transmission scheme is utilized for the sake of further reducing energy consumption. Considering the practical constraint of AirComp signal distortion, the objective function of optimizing FL performance is carefully formulated and solved by the proposed quantity-quality jointed linkage search algorithm. Simulation results demonstrate that our proposed asynchronous FL framework outperforms the conventional synchronous FL framework by a decline of 30.07% in convergence time at most. It also provides an average increase of 110% and 580%, respectively, in terms of throughput and energy efficiency in all scenarios considered. Overall, our study presents a beneficial asynchronous FL framework and a fast aggregation scheduling algorithm in LEO satellite networks, accelerating the convergence of the global model with reduced energy expenditure.
引用
收藏
页码:19885 / 19901
页数:17
相关论文
共 50 条
  • [1] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [2] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [3] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [4] Semi-Asynchronous Federated Edge Learning for Over-the-air Computation
    Kou, Zhoubin
    Ji, Yun
    Zhong, Xiaoxiong
    Zhang, Sheng
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1351 - 1356
  • [5] Broadband Digital Over-the-Air Computation for Asynchronous Federated Edge Learning
    Zhao, Xinbo
    You, Lizhao
    Rui Cao
    Shao, Yulin
    Fu, Liqun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5359 - 5364
  • [6] Federated Linear Bandit Learning via Over-the-air Computation
    Wang, Jiali
    Jiang, Yuning
    Liu, Xin
    Wang, Ting
    Shi, Yuanming
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1363 - 1368
  • [7] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [8] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [9] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [10] Federated Learning via Active RIS Assisted Over-the-Air Computation
    Zhang, Deyou
    Xiao, Ming
    Skoglund, Mikael
    Poor, H. Vincent
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 201 - 207