Super-Resolution Deep Learning Network for Finite-Difference Time-Domain Simulations

被引:0
作者
Li, Haolin [1 ]
Liu, Shuo [2 ]
Tan, Eng Leong [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Elect Engn, Harbin 150001, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 12期
关键词
Coarse-fine grid reconstruction; deep learning network; finite-difference time-domain (FDTD); super-resolution;
D O I
10.1109/LAWP.2024.3470522
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When selecting the spatial grid size in finite-difference time-domain (FDTD) simulations, it is necessary to balance numerical dispersion and computational resources. Coarser grids are less computationally intensive but decrease simulation accuracy, while finer grids can reduce numerical dispersion and enhance accuracy at the cost of increased simulation time. To address this challenge, this letter introduces a super-resolution deep learning network (SR-FDTDNet), which aims to improve FDTD simulation methods. SR-FDTDNet seeks to uncover the implicit mapping between coarse-grid and fine-grid simulation fields, enabling the reconstruction of fine-grid simulations from coarse-grid FDTD simulations. It can capture local information in the spatial and temporal dimensions of simulation data and model long-term dependencies through parallel computing, effectively addressing the complexity of FDTD simulation data. Results from practical electromagnetic simulation scenarios demonstrate that SR-FDTDNet significantly improves simulation efficiency while maintaining high accuracy in reconstructing fine-grid simulation fields.
引用
收藏
页码:4763 / 4767
页数:5
相关论文
共 19 条
  • [1] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [2] Exploring Vision Transformers for Polarimetric SAR Image Classification
    Dong, Hongwei
    Zhang, Lamei
    Zou, Bin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Electromagnetic Modeling Using an FDTD-Equivalent Recurrent Convolution Neural Network: Accurate Computing on a Deep Learning Framework.
    Guo, Liangshuai
    Li, Maokun
    Xu, Shenheng
    Yang, Fan
    Liu, Li
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2023, 65 (01) : 93 - 102
  • [4] Recurrent Back-Projection Network for Video Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3892 - 3901
  • [5] Deep Back-Projection Networks For Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1664 - 1673
  • [6] VRT: A Video Restoration Transformer
    Liang, Jingyun
    Cao, Jiezhang
    Fan, Yuchen
    Zhang, Kai
    Ranjan, Rakesh
    Li, Yawei
    Timofte, Radu
    Van Gool, Luc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2171 - 2182
  • [7] Loshchilov F., 2018, P INT C LEARN REPR, P1
  • [8] COLA-Net: Collaborative Attention Network for Image Restoration
    Mou, Chong
    Zhang, Jian
    Fan, Xiaopeng
    Liu, Hangfan
    Wang, Ronggang
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1366 - 1377
  • [9] Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics
    Pereda, JA
    Garcia, O
    Vegas, A
    Prieto, A
    [J]. IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1998, 8 (07): : 245 - 247
  • [10] Qi Shutong, 2022, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), P671, DOI 10.1109/AP-S/USNC-URSI47032.2022.9886317